
1 Planners and decisionmakers must also consider the variability of the analyte in sampled populations, as discussed
in Appendix C; however, the focus of this chapter is on the uncertainty of measuring the analyte in each laboratory
sample.
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19  MEASUREMENT UNCERTAINTY

19.1 Overview

This chapter discusses the evaluation and reporting of measurement uncertainty. Laboratory
measurements always involve uncertainty, which must be considered when analytical results are
used as part of a basis for making decisions.1 Every measured result reported by a laboratory
should be accompanied by an explicit uncertainty estimate. One purpose of this chapter is to give
users of radioanalytical data an understanding of the causes of measurement uncertainty and of
the meaning of uncertainty statements in laboratory reports. The chapter also describes proce-
dures which laboratory personnel use to estimate uncertainties.

This chapter has more than one intended audience. Not all readers are expected to have the
mathematical skills necessary to read and completely understand the entire chapter. For this
reason the material is arranged so that general information is presented first and the more tech-
nical information, which is intended primarily for laboratory personnel with the required mathe-
matical skills, is presented last. The general discussion in Sections 19.2 and 19.3 requires little
previous knowledge of statistical metrology on the part of the reader and involves no mathe-
matical formulas; however, if the reader is unfamiliar with the fundamental concepts and terms
of probability and statistics, he or she should read Attachment 19A before starting Section 19.3.
The technical discussion in Sections 19.4 and 19.5 requires an understanding of basic algebra and
at least some familiarity with the fundamental concepts of probability and statistics. The discus-
sion of uncertainty propagation requires
knowledge of differential calculus for a com-
plete understanding. Attachments 19C�E are
intended for technical specialists.
 
The major recommendations of the chapter
are summarized in Section 19.3.9.

19.2 The Need for Uncertainty
Evaluation

Radiochemical laboratories have long recog-
nized the need to provide uncertainties with
their results. Almost from the beginning, lab-
oratories have provided the counting uncer-
tainty for each result, because it is usually
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easy to evaluate (see Sections 19.3.5 and 19.5.2). However, the counting uncertainty is only one
component of the total measurement uncertainty. Over the years it has been recommended
repeatedly that laboratories perform good evaluations of the total uncertainty of each measure-
ment. In 1980 the Environmental Protection Agency published a report entitled �Upgrading
Environmental Radiation Data,� which was produced by an ad hoc committee of the Health
Physics Society. Two of the recommendations of this report were stated as follows (EPA 1980).

Every reported measurement result (x) should include an estimate of its overall
uncertainty (ux) which is based on as nearly a complete an assessment as possible.

The uncertainty assessment should include every conceivable or likely source of
inaccuracy in the result.

More recently ANSI N42.23, American National Standard Measurement and Associated Instru-
ment Quality Assurance for Radioassay Laboratories, recommended that service laboratories
report both the counting uncertainty and the total propagated uncertainty. ISO/IEC 17025,
General Requirements for the Competence of Testing and Calibration Laboratories, which was
released as a standard in 1999, requires calibration and testing laboratories to �have and apply�
procedures for estimating measurement uncertainties (ISO/IEC, 1999). The National Environ-
mental Laboratory Accreditation Conference (NELAC) has also published a standard on labora-
tory quality systems, which requires a radiochemical testing laboratory to report with each result
its associated measurement uncertainty (NELAC, 2002, ch. 5).

Note that the concept of traceability (see Chapter 18) is defined in terms of uncertainty. Trace-
ability is defined as the �property of the result of a measurement or the value of a standard
whereby it can be related to stated references, usually national or international standards, through
an unbroken chain of comparisons all having stated uncertainties� (ISO, 1993a). Thus, a labora-
tory cannot realistically claim that its measurement results are �traceable� to a standard unless
there exists a chain of comparisons, each with an associated uncertainty, connecting its results to
that standard.

This chapter considers only measurement uncertainty. The claim is often made that field samp-
ling uncertainties are so large that they dwarf laboratory measurement uncertainties. Although the
claim may be true in some cases, MARLAP rejects this argument as an excuse for failing to per-
form a full evaluation of the measurement uncertainty. A realistic estimate of the measurement
uncertainty is one of the most useful quality indicators for a result.

Although the need for good uncertainty evaluation has long been recognized, not all laboratories
have been able to implement the recommendations fully. A certain level of mathematical sophis-
tication is required. Implementation requires, at a minimum, a mastery of basic algebra, some
knowledge of differential calculus and a grasp of many concepts of probability and statistics; but
even more fundamentally it requires an understanding of the various aspects of the measurement
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process in the laboratory, including chemical and physical principles as well as practical consid-
erations. Implementation at a laboratory is certainly easier if there are those who understand both
the measurement process and the mathematical methods, but in some cases it may be necessary
to use a team approach that brings together all the required expertise.

Today there is software that performs the mathematical operations for uncertainty evaluation and
propagation, and some of the difficulties of implementation may disappear as such software
becomes more widely available. Nevertheless analysts and technicians will still need to under-
stand the concepts of measurement uncertainty and how they apply to particular measurement
processes in the laboratory.

19.3 Evaluating and Expressing Measurement Uncertainty

The methods, terms, and symbols recommended by MARLAP for evaluating and expressing
measurement uncertainty are described in the Guide to the Expression of Uncertainty in Meas-
urement, hereafter abbreviated as GUM, which was published by the International Organization
for Standardization (ISO) in 1993 and corrected and reprinted in 1995 (ISO, 1995). The methods
presented in the GUM are summarized in this chapter and adapted for application to radiochem-
istry.

The terminology and notation used by the GUM and this chapter may be unfamiliar or confusing
to readers who are familiar with statistics but not metrology. Metrology (the science of measure-
ment) uses the language and methods of probability and statistics, but adds to them its own
terms, symbols, and approximation methods.

19.3.1  Measurement, Error, and Uncertainty

The result of a measurement is generally used to estimate some particular quantity called the
measurand. For example, the measurand for a radioactivity measurement might be the specific
activity of 238Pu in a laboratory sample. The difference between the measured result and the
actual value of the measurand is the error of the measurement. Both the measured result and the
error may vary with each repetition of the measurement, while the value of the measurand (the
true value) remains fixed.

Measurement error may be caused by random effects and systematic effects in the measurement
process. Random effects cause the measured result to vary randomly when the measurement is
repeated. Systematic effects cause the result to tend to differ from the value of the measurand by
a constant absolute or relative amount, or to vary in a nonrandom manner. Generally, both ran-
dom and systematic effects are present in a measurement process.
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2 In some performance-testing programs, the term �bias� is used to mean the difference between a laboratory�s
measured result and the target value. For example, one of the two definitions of bias stated in ANSI N13.30, �Per-
formance Criteria for Radiobioassay,� is the �deviation of a single measured value of a random variable from a cor-
responding expected value.� MARLAP notes that such a deviation, even if it is large, may not give a reliable indica-
tion of bias in the statistical or metrological sense.
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A measurement error produced by a random effect is a random error, and an error produced by a
systematic effect is a systematic error. A systematic error is often called a �bias� (see also
Attachment 19A).2 The distinction between random and systematic errors depends on the specifi-
cation of the measurement process, since a random error in one measurement process may appear
systematic in another. For example, a random error in the measurement of the specific activity of
a radioactive standard solution may be systematic from the point of view of a laboratory that pur-
chases the solution and uses it to calibrate instruments for other measurements.

Measurement errors may also be spurious errors, such as those caused by human blunders and
instrument malfunctions. Blunders and other spurious errors are not taken into account in the
statistical evaluation of measurement uncertainty. They should be avoided, if possible, by the use
of good laboratory practices, or at least detected and corrected by appropriate quality assurance
and quality control.

The error of a measurement is unknowable, because one cannot know the error without knowing
the true value of the quantity being measured (the measurand). For this reason, the error is pri-
marily a theoretical concept. However, the uncertainty of a measurement is a concept with prac-
tical uses. According to the GUM, the term �uncertainty of measurement� denotes a �parameter,
associated with the result of a measurement, that characterizes the dispersion of the values that
could reasonably be attributed to the measurand.� The uncertainty of a measured value thus gives
a bound for the likely size of the measurement error. In practice, there is seldom a need to refer to
the error of a measurement, but an uncertainty should be stated for every measured result.

19.3.2  The Measurement Process

The International Union of Pure and Applied Chemistry (IUPAC) defines a (chemical) measure-
ment process as an �analytical method of defined structure that has been brought into a state of
statistical control, such that its imprecision and bias are fixed, given the measurement condi-
tions� (IUPAC, 1995). The requirement of statistical control is an important aspect of the defini-
tion, since it is crucial to the determination of realistic uncertainty estimates. Statistical control
implies that the measurement process is stable with a predictable distribution of results, and is a
prerequisite for uncertainty evaluation and for the determination of process performance charac-
teristics, such as the detection and quantification capabilities (see Chapter 20).

The laboratory ensures that the measurement process remains in a state of statistical control by
following appropriate quality control (QC) procedures, as described in Chapter 18. Procedures
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3 Because of the unavoidable ambiguity in the specification of the measurand, one should, to be precise, speak of �a
value� of the measurand and not �the value.�

4 In accordance with the GUM, an uppercase letter is used here to denote both the input or output quantity and the
random variable associated with its measurement, while a lowercase letter is used for the estimated value of the
quantity. For simplicity, in most of the later examples this convention will be abandoned. Only one symbol will be
used for the quantity, the random variable, and the estimated value of the quantity.
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for statistical QC can be designed not only to ensure process stability but also to obtain data for
use in the evaluation of measurement uncertainties.

The first step in defining a measurement process is to define the measurand clearly. The specifi-
cation of the measurand is always ambiguous to some extent, but it should be as clear as neces-
sary for the intended purpose of the data.3 For example, when measuring the activity of a
radionuclide in a laboratory sample, it is generally necessary to specify the activity as of a certain
date and time and whether the entire sample or only a certain fraction is of interest. For very
accurate work, it may be necessary to specify other conditions, such as temperature (e.g., activity
concentration at 20 EC).

Often the measurand is not measured directly but instead an estimate is calculated from the meas-
ured values of other input quantities, which have a known mathematical relationship to the meas-
urand. For example, input quantities in a measurement of radioactivity may include the gross
count, blank or background count, counting efficiency and test portion size. So, another
important aspect of the measurement process is the mathematical model for the relationship
between the output quantity, Y, and measurable input quantities, X1,X2,�,XN, on which its value
depends. The relationship will be expressed here abstractly as Y = f(X1,X2,�,XN), but in practice
the actual relationship may be expressed using a set of equations. What is important about a
mathematical model is that it describes exactly how the value of the output quantity depends on
the values of the input quantities.

The mathematical model for a radioactivity measurement often has the general form

Y �� (Gross Instrument Signal) � (Blank Signal % Estimated Interferences)
Sensitivity

Each of the quantities shown here may actually be a more complicated expression. For example,
the sensitivity (the ratio of the net signal to the measurand) may be the product of factors such as
the mass of the test portion, the chemical yield (recovery) and the instrument counting efficiency.

When the measurement is performed, a value xi is estimated for each input quantity, Xi, and an
estimated value, y, of the measurand is calculated using the relationship y = f(x1,x2,�,xN).4 Since
there is an uncertainty in each input estimate, xi , there is also an uncertainty in the output esti-
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mate, y. In order to obtain a complete estimate of the uncertainty of y, all input quantities that
could have a potentially significant effect on y should be included in the model.

19.3.3  Analysis of Measurement Uncertainty

Determining the uncertainty of the output estimate y requires that the uncertainties of all the input
estimates xi be determined and expressed in comparable forms. The uncertainty of xi is expressed
in the form of an estimated standard deviation, called the standard uncertainty and denoted by
u(xi), or in the form of an estimated variance, denoted by u2(xi), which is the square of the stan-
dard uncertainty. A standard uncertainty is sometimes informally called a �one-sigma� uncer-
tainty. The ratio u(xi) /  is called the relative standard uncertainty of xi, which may be denoted|xi |
by ur(xi). If the input estimates are potentially correlated, covariance estimates u(xi,xj) must also
be determined. The covariance u(xi,xj) is often recorded and presented in the form of an
estimated correlation coefficient, r(xi,xj), which is defined as the quotient u(xi,xj) / u(xi)u(xj). The
standard uncertainties and estimated covariances are combined to obtain the combined standard
uncertainty of y, denoted by uc(y). (The term �total propagated uncertainty,� or TPU, has been
used for the same concept; however, MARLAP recommends the GUM�s terminology.) The
square of the combined standard uncertainty, denoted by uc

2(y), is called the combined variance.

The mathematical operation of combining the standard uncertainties of the input estimates,
x1,x2,�,xN, to obtain the combined standard uncertainty of the output estimate, y, is called
�uncertainty propagation.� Mathematical methods for propagating uncertainty and for evaluating
the standard uncertainties of the input estimates are described in Section 19.4.

When one repeats a measurement many times, the observed standard deviation is generated pri-
marily by random measurement errors and not by those systematic errors that remain fixed from
one measurement to the next. Although the combined standard uncertainty of a result is ex-
pressed in the form of an estimated standard deviation, it is intended to account for both random
and systematic errors, and for this reason it should tend to be somewhat larger than the standard
deviation that is observed in repeated measurements. So, if the measurement is repeated many
times and the observed standard deviation is substantially larger than the combined standard un-
certainties of the results, one may conclude that the uncertainties are being underestimated.

Methods for evaluating the standard uncertainties u(xi) are classified as either Type A or Type B.
A Type A evaluation is a statistical evaluation based on repeated observations. One typical
example of a Type A evaluation involves making a series of independent measurements of a
quantity, Xi, and calculating the arithmetic mean and the experimental standard deviation of the
mean. The arithmetic mean is used as the input estimate, xi, and the experimental standard
deviation of the mean is used as the standard uncertainty, u(xi). There are other Type A methods,
but all are based on repeated measurements. Any evaluation of standard uncertainty that is not a
Type A evaluation is a Type B evaluation.
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Sometimes a Type B evaluation of uncertainty involves making a best guess based on all avail-
able information and professional judgment. Laboratory workers may be reluctant to make this
kind of evaluation, but it is better to make an informed guess about an uncertainty component
than to ignore it completely.

A standard uncertainty u(xi) may be called a �Type A� or �Type B� standard uncertainty, depend-
ing on its method of evaluation, but no distinction is made between the two types for the pur-
poses of uncertainty propagation.

19.3.4  Corrections for Systematic Effects

When a systematic effect in the measurement process has been identified and quantified, a quan-
tity should be included in the mathematical measurement model to correct for it. The quantity,
called a correction (additive) or correction factor (multiplicative), will have an uncertainty which
should be evaluated and propagated.

Whenever a previously unrecognized systematic effect is detected, the effect should be investi-
gated and either eliminated procedurally or corrected mathematically.

19.3.5  Counting Uncertainty

The counting uncertainty of a radiation measurement (historically called �counting error�) is the
component of uncertainty caused by the random nature of radioactive decay and radiation count-
ing. Radioactive decay is inherently random in the sense that two atoms of a radionuclide will
generally decay at different times, even if they are identical in every discernible way. Radiation
counting is also inherently random unless the efficiency of the counting instrument is 100 %.

In many cases the counting uncertainty in a single gross radiation counting measurement can be
estimated by the square root of the observed counts. The Poisson model of radiation counting,
which is the mathematical basis for this rule, is discussed in Section 19.5. Note that the use of
this approximation is a Type B evaluation of uncertainty.

Historically many radiochemistry laboratories reported only the counting uncertainties of their
measured results. MARLAP recommends that a laboratory consider all possible sources of meas-
urement uncertainty and evaluate and propagate the uncertainties from all sources believed to be
potentially significant in the final result.

19.3.6  Expanded Uncertainty

When a laboratory reports the result of a measurement, it may report the combined standard
uncertainty, uc(y), or it may multiply uc(y) by a factor k, called a coverage factor, to produce an
expanded uncertainty, denoted by U, such that the interval from y ! U to y + U has a specified
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5 When the distribution of the result is highly asymmetric, so that the result is more likely to fall on one side of the
value of the measurand than the other, the use of a single expanded uncertainty, U, to construct a symmetric uncer-
tainty interval about the result may be misleading, especially if one wishes to state an approximate coverage prob-
ability for the interval. However, methods for constructing an asymmetric uncertainty interval with a stated coverage
probability are beyond the scope of this chapter and require more information than that provided by the input
estimates, their standard uncertainties, and estimated covariances (e.g., Monte Carlo simulation). Note that the value
of the combined standard uncertainty is unaffected by the symmetry or asymmetry of the distribution.
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high probability p of containing the value of the measurand. The specified probability, p, is called
the level of confidence or the coverage probability and is generally only an approximation of the
true probability of coverage.

When the distribution of the measured result is approximately normal, the coverage factor is
often chosen to be k = 2 for a coverage probability of approximately 95 %. An expanded uncer-
tainty calculated with k = 2 or 3 is sometimes informally called a �two-sigma� or �three-sigma�
uncertainty. In general, if the desired coverage probability is γ and the combined standard uncer-
tainty is believed to be an accurate estimate of the standard deviation of the measurement proc-
ess, the coverage factor for a normally distributed result is k = z(1 + γ) / 2, which can be found in a
table of quantiles of the standard normal distribution (see Table G.1 in Appendix G).

The GUM recommends the use of coverage factors in the range 2�3 when the combined standard
uncertainty represents a good estimate of the true standard deviation. Attachment 19D describes a
more general procedure for calculating the coverage factor, kp, that gives a desired coverage
probability p when there is substantial uncertainty in the value of uc(y).

The GUM does not assign a name to the interval y ± U, but it clearly states that the interval
should not be called a �confidence interval,� because this term has a precise statistical definition
and the interval described by the expanded uncertainty usually does not meet the requirements.
The interval y ± U is sometimes called an �uncertainty interval.�5

19.3.7  Significant Figures

The number of significant figures that should be reported for the result of a measurement
depends on the uncertainty of the result. A common convention is to round the uncertainty (stan-
dard uncertainty or expanded uncertainty) to either one or two significant figures and to report
both the measured value and the uncertainty to the resulting number of decimal places (ISO,
1995; Bevington, 1992; EPA, 1980; ANSI N42.23). MARLAP recommends this convention and
suggests that uncertainties be rounded to two figures. The following examples demonstrate the
application of the rule.
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EXAMPLES

MEASURED
VALUE

(y)

EXPANDED
UNCERTAINTY 

U = kuc(y)

REPORTED
RESULT

0.8961     0.0234 0.896 ± 0.023

0.8961     0.2342 0.90 ± 0.23

0.8961     2.3419 0.9 ± 2.3

0.8961   23.4194 1 ± 23

0.8961 234.1944 0 ± 230

Only final results should be rounded in this manner. Intermediate results in a series of calculation
steps should be carried through all steps with additional figures to prevent unnecessary roundoff
errors. Additional figures are also recommended when the data are stored electronically. Round-
ing should be performed only when the result is reported. (See Section 19.5.11 for a discussion of
the measurement uncertainty associated with rounding.)

19.3.8  Reporting the Measurement Uncertainty

When a measured value y is reported, its uncertainty should always be stated. The laboratory may
report either the combined standard uncertainty uc(y) or the expanded uncertainty U.

The measured value, y, and its expanded uncertainty, U, may be reported in the format y ± U or
y +� U.

The plus-minus format may be used to report an expanded uncertainty, but it generally should be
avoided when reporting a standard uncertainty, because readers are likely to interpret it as a con-
fidence interval with a high coverage probability. A commonly used shorthand format for report-
ing a result with its standard uncertainty places the one or two digits of the standard uncertainty
in parentheses immediately after the corresponding final digits of the rounded result. For ex-
ample, if the rounded result of the measurement is 1.92 and the standard uncertainty is 0.14, the
result and uncertainty may be shown together as 1.92(14). Another acceptable reporting format
places the entire standard uncertainty in parentheses. The result in the preceding example would
appear in this format as 1.92(0.14). The laboratory may also report the standard uncertainty
explicitly.

Since laboratories may calculate uncertainties using different methods and report them using
different coverage factors, it is a bad practice to report an uncertainty without explaining what it
represents. Any analytical report, even one consisting of only a table of results, should state
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whether the uncertainty is the combined standard uncertainty or an expanded uncertainty, and in
the latter case it should also state the coverage factor used and, if possible, the approximate cov-
erage probability. A complete report should also describe the methods used to calculate the un-
certainties. If the laboratory uses a shorthand format for the uncertainty, the report should include
an explanation of the format.

The uncertainties for environmental radioactivity measurements should be reported in the same
units as the results. Relative uncertainties (i.e., uncertainties expressed as percentages) may also
be reported, but the reporting of relative uncertainties alone is not recommended when the meas-
ured value may be zero, because the relative uncertainty in this case is undefined. A particularly
bad practice, sometimes implemented in software, is to compute the relative uncertainty first and
multiply it by the measured value to obtain the absolute uncertainty. When the measured value is
zero, the uncertainty is reported incorrectly as zero. Reporting of relative uncertainties without
absolute uncertainties for measurements of spiked samples or standards generally presents no
problems, because the probability of a negative or zero result is negligible.

It is possible to calculate radioanalytical results that are less than zero, although negative radio-
activity is physically impossible. Laboratories sometimes choose not to report negative results or
results that are near zero. Such censoring of results is not recommended. All results, whether pos-
itive, negative, or zero, should be reported as obtained, together with their uncertainties.

The preceding statement must be qualified, because a measured value y may be so far below zero
that it indicates a possible blunder, procedural failure, or other quality control problem. Usually,
if y + 3uc(y) < 0, the result should be considered invalid, although the accuracy of the uncertainty
estimate uc(y) must be considered, especially in cases where only few counts are observed during
the measurement and counting uncertainty is the dominant component of uc(y). (See Chapter 18,
Laboratory Quality Control, and Attachment 19D of this chapter.)

19.3.9  Recommendations

MARLAP makes the following recommendations to radioanalytical laboratories.

� All radioanalytical laboratories should adopt the terminology and methods of the Guide to
the Expression of Uncertainty in Measurement (ISO, 1995) for evaluating and reporting
measurement uncertainty.

� The laboratory should follow QC procedures that ensure the measurement process
remains in a state of statistical control, which is a prerequisite for uncertainty evaluation.

� Uncertainty estimates should account for both random and systematic effects in the meas-
urement process, but they should not account for possible blunders or other spurious
errors. Spurious errors indicate a loss of statistical control of the process.
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� The laboratory should report each measured value with either its combined standard
uncertainty or its expanded uncertainty.

� The reported measurement uncertainties should be clearly explained. In particular, when
an expanded uncertainty is reported, the coverage factor should be stated, and, if possible,
the approximate coverage probability should also be given.

� A laboratory should consider all possible sources of measurement uncertainty and eval-
uate and propagate the uncertainties from all sources believed to be potentially significant
in the final result.

� Each uncertainty should be rounded to either one or two significant figures, and the
measured value should be rounded to the same number of decimal places as its uncer-
tainty. (MARLAP prefers the use of two figures in the uncertainty.) Only final results
should be rounded in this manner.

� The laboratory should report all results, whether positive, negative, or zero, as obtained,
together with their uncertainties.

MARLAP makes no recommendations regarding the presentation of radioanalytical data by the
laboratory�s clients or other end users of the data.

19.4 Procedures for Evaluating Uncertainty

The usual steps for evaluating and reporting the uncertainty of a measurement may be sum-
marized as follows (adapted from Chapter 8 of the GUM):

1. Identify the measurand, Y, and all the input quantities, Xi, for the mathematical model.
Include all quantities whose variability or uncertainty could have a potentially significant
effect on the result. Express the mathematical relationship, Y = f(X1,X2,�,XN), between
the measurand and the input quantities.

2. Determine an estimate, xi, of the value of each input quantity, Xi  (an �input estimate,� as
defined in Section 19.3.2).

3. Evaluate the standard uncertainty, u(xi), for each input estimate, xi , using either a Type A
or Type B method of evaluation (see Section 19.3.3).

4. Evaluate the covariances, u(xi,xj), for all pairs of input estimates with potentially signifi-
cant correlations.
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5. Calculate the estimate, y, of the measurand from the relationship y = f(x1,x2,�,xN), where
f is the function determined in Step 1.

6. Determine the combined standard uncertainty, uc(y), of the estimate, y (see Section
19.3.3).

7. Optionally multiply uc(y) by a coverage factor k to obtain the expanded uncertainty U
such that the interval [y ! U, y + U] can be expected to contain the value of the measur-
and with a specified probability (see Section 19.3.6 and Attachment 19D).

8. Report the result as y ± U with the unit of measurement, and, at a minimum, state the
coverage factor used to compute U and the estimated coverage probability. Alternatively,
report the result, y, and its combined standard uncertainty, uc(y), with the unit of
measurement.

19.4.1  Identifying Sources of Uncertainty

The procedure for assessing the uncertainty of a measurement begins with listing all conceivable
sources of uncertainty in the measurement process. Even if a mathematical model has been iden-
tified, further thought may lead to the inclusion of more quantities in the model. Some sources of
uncertainty will be more significant than others, but all should be listed.

After all conceivable sources of uncertainty are listed, they should be categorized as either poten-
tially significant or negligible. Each uncertainty that is potentially significant should be evaluated
quantitatively. The following sources of uncertainty may not always be significant but should at
least be considered:

� radiation counting
� instrument calibration (e.g., counting efficiency)
� tracers, carriers, or other methods of yield measurement
� variable instrument backgrounds
� variable counting efficiency (e.g., due to the instrument or to source geometry and

placement)
� contamination of reagents and tracers
� interferences, such as crosstalk and spillover
� baseline determination (gamma-ray spectrometry)
� laboratory subsampling

Other sources of uncertainty include:

� volume and mass measurements
� determination of counting time and correction for dead time
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� time measurements used in decay and ingrowth calculations
� approximation errors in simplified mathematical models
� published values for half-lives and radiation emission probabilities

NOTE: MARLAP does not recommend that laboratories expend tremendous effort on the evalu-
ation of small components of uncertainty when much larger components are known to dominate
the combined standard uncertainty of the result. However, this chapter does provide guidance in
several places on the evaluation of very small uncertainties. Such examples may be instructive
even if the uncertainties are negligible, because they illustrate either important concepts or pos-
sible methods of uncertainty evaluation. Furthermore, an uncertainty component that is negligible
in one context (e.g., pipetting uncertainty in the context of measuring the activity of a
radionuclide in a soil sample) may be considered significant in another (e.g., quality control of
measuring instruments). It is also true that a very large number of small uncertainties may be
significant when combined.

19.4.2  Evaluation of Standard Uncertainties

Calculating the combined standard uncertainty of an output estimate y = f(x1,x2,�,xN) requires
the evaluation of the standard uncertainty of each input estimate, xi. As stated earlier, methods for
evaluating standard uncertainties are classified as either �Type A� or �Type B.� A Type A eval-
uation of an uncertainty uses a series of measurements to estimate the standard deviation empiri-
cally. Any other method of evaluating an uncertainty is a Type B method.

In general, the standard uncertainty of an input estimate, xi, is an estimated standard deviation for
the estimator whose value is used for xi. The appropriate methods for estimating this standard
deviation depend on how the value of the input estimate is obtained.

19.4.2.1  Type A Evaluations

Suppose Xi is an input quantity in the mathematical model. If a series of n independent observa-
tions of Xi are made under the same measurement conditions, yielding the results Xi,1, Xi,2, ..., Xi,n,
the appropriate value for the input estimate xi is the arithmetic mean, or average, , defined asXi

The experimental variance of the observed values is defined as
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6 The experimental standard deviation of the mean, , may be used as the standard uncertainty of the average,s(Xi)
, even if the individual observations Xi,k are obtained under different conditions of measurement, so long as allXi

pairs of distinct observations, Xi,k and Xi,l, can be considered to be uncorrelated. However, in these circumstances, it
is sometimes better to define the input estimate, xi, to be a weighted average of the observations.
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s(Xi) '
s(Xi,k)

n
(19.3)

u(xi) '
1

n (n & 1) j
n

k'1
(Xi,k & X i)

2 (19.4)

and the experimental standard deviation, s(Xi, k), is the square root of s2(Xi, k). The experimental
standard deviation of the mean, s( ), is obtained by dividing s(Xi, k) by .6Xi n

The experimental standard deviation of the mean is also commonly called the �standard error of
the mean.�

The Type A standard uncertainty of the input estimate xi =  is defined to be the experimentalXi
standard deviation of the mean. Combining the preceding formulas gives the following equation
for the standard uncertainty of xi:

When the input estimate xi and standard uncertainty u(xi) are evaluated as described above, the
number of degrees of freedom for the evaluation is equal to n ! 1, or one less than the number of
independent measurements of the quantity Xi . In general, the number of degrees of freedom for a
statistical determination of a set of quantities equals the number of independent observations
minus the number of quantities estimated. The number of degrees of freedom for each evaluation
of standard uncertainty is needed to implement the procedure for calculating coverage factors
described in Attachment 19D.

EXAMPLE 19.1  Ten independent measurements of a quantity Xi are made, yielding the values

12.132    12.139    12.128    12.133    12.132
12.135    12.130    12.129    12.134    12.136

The estimated value xi is the arithmetic mean of the values Xi,k .

xi ' Xi '
1
n j

n

k'1
Xi,k '

121.328
10

' 12.1328
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The standard uncertainty of xi is

u(xi) ' s(Xi) '
1

n (n&1) j
n

k'1
(Xi,k & Xi)

2

'
1

10 (10�1) j
10

k'1
(Xi,k & 12.1328)2

' 1.12889 × 10&6 ' 0.0011

USE OF HISTORICAL DATA

In some cases there may be accumulated data for a measurement system, such as a balance or
pipet, which can be used in a Type A evaluation of uncertainty for future measurements,
assuming the measurement process remains in control. In fact the use of recent historical data is
advisable in such cases, because it enlarges the pool of data available for uncertainty evaluation
and increases the number of degrees of freedom. This type of uncertainty evaluation can be
linked closely to the measurement system�s routine quality control.

One may pool recent historical data with current measurement data, or one may evaluate an
uncertainty based on historical data alone. The appropriate expression for the standard uncer-
tainty depends on how the data are used to calculate the input estimate, xi, and on whether xi is
used to estimate the value of a parameter or to predict the value of a variable. An example of
estimating the value of a parameter is measuring the mass of material in a container using an
analytical balance. An example of predicting the value of a variable is calibrating a pipet, since
the actual volumes dispensed by the pipet in subsequent measurements vary and are seldom
measured directly.

Attachment 19E provides descriptions and examples of the use of historical data for Type A eval-
uations of uncertainty in mass and volume measurements.

EVALUATION OF COVARIANCE

If Xi and Xj are two input quantities and estimates of their values are correlated, a Type A evalua-
tion of covariance may be performed by making n independent pairs of simultaneous observa-
tions of Xi and Xj and calculating the experimental covariance of the means. If the observed pairs
are (Xi,1,Xj,1), (Xi,2,Xj,2), �, (Xi,n,Xj,n), the experimental covariance of the values is
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s(Xi,k,Xj,k) '
1

n & 1 j
n

k'1
(Xi,k & X i) (Xj,k & Xj) (19.5)

s(Xi,X j) '
s(Xi,k,Xj,k)

n
(19.6)

u(xi,xj) �� s(X i,Xj) �� 1
n (n � 1) j

n

k��1
(Xi,k � Xi) (Xj,k � X j) (19.7)

and the experimental covariance of the means  and  isXi Xj

So, the Type A covariance of the input estimates xi =  and xj =  isXi Xj

An evaluation of variances and covariances of quantities determined by the method of least
squares may also be a Type A evaluation.

19.4.2.2  Type B Evaluations

There are many ways to perform Type B evaluations of standard uncertainty. This section de-
scribes some common Type B evaluations but is not meant to be exhaustive.

POISSON COUNTING UNCERTAINTY

One example of a Type B method already given is the estimation of counting uncertainty using
the square root of the observed counts. If the observed count is N, when the Poisson approxima-
tion is used, the standard uncertainty of N may be evaluated as u(N) = . When N may be veryN
small or even zero, MARLAP recommends the use of the equation u(N) =  instead (seeN % 1
Attachment 19D).

EXAMPLE 19.2  A Poisson counting measurement is performed, during which N = 121 counts
are observed. So, the standard uncertainty of N is u(N) =  = 11.121

RECTANGULAR DISTRIBUTION

Sometimes a Type B evaluation of an uncertainty u(x) consists of estimating an upper bound a
for the magnitude of the error of x based on professional judgment and the best available infor-
mation. If nothing else is known about the distribution of the measured result, then after a is esti-
mated, the standard uncertainty may be calculated using the equation 
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u(x) ' a
3

(19.8)

u(x) ' a 1 % β2

6
(19.9)

which is derived from a statistical model in which the error has a rectangular, or uniform, distri-
bution bounded by �a and +a (see Section 19A.6 in Attachment 19A).

EXAMPLE 19.3  The maximum error of a measured value x = 34.40 is estimated to be a = 0.05,
with all values between 34.35 and 34.45 considered equally likely. So, the standard uncertainty
of x is u(x) = 0.05 /  = 0.029.3

EXAMPLE 19.4  A strontium carrier solution is prepared by dissolving strontium nitrate in
acidified water. The purity, P, of the strontium nitrate is stated to be 99.9 %, or 0.999, but no
tolerance or uncertainty is provided. By default, a rectangular distribution with half-width
1 ! P, or 0.001, is assumed. So, the standard uncertainty of P is evaluated as u(P) =
0.001 /  = 0.00058.3

TRAPEZOIDAL DISTRIBUTION

It may also happen that one can estimate an upper bound, a, for the magnitude of the error so that
the input quantity is believed with near certainty to lie between x ! a and x + a, but one believes
that values near x are more likely than those near the extremes, x ± a. In this case, a symmetric
trapezoidal distribution may be used to obtain the standard uncertainty of x. The trapezoidal dis-
tribution is named for the fact that the graph of its pdf has the shape of a trapezoid (see Section
19A.7 in Attachment 19A). To use the trapezoidal model, one determines the value a, which rep-
resents the maximum possible error of the input estimate, and another value, β, which describes
the fraction of possible values about the input estimate that are considered most likely
(0 < β < 1). Then the standard uncertainty of x is given by the following expression.

As β approaches zero, the trapezoidal distribution becomes triangular, and the standard uncer-
tainty of x approaches . As β approaches one, the trapezoidal distribution becomes rectan-a / 6
gular, and the standard uncertainty of x approaches .a / 3
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EXAMPLE 19.5  Extreme bounds for a quantity X are estimated to be 34.3 and 34.5, with val-
ues between 34.35 and 34.45 considered most likely. Using the trapezoidal model, one obtains
the input estimate

x ' 34.3 % 34.5
2

the half-width

a '
34.5 & 34.3

2
' 0.1

and the fraction

β ' 34.45 & 34.35
34.5 & 34.3

'
0.1
0.2

' 0.5

Then the standard uncertainty of x is calculated as follows.

u(x) ' a 1 % β2

6
' 0.1 1 % 0.52

6
' 0.046

EXAMPLE 19.6  The manufacturer of a 100-milliliter volumetric flask specifies that the
capacity tolerance is 0.08 mL. The user of the flask assumes the tolerance represents the half-
width of a triangular distribution and evaluates the standard uncertainty of the capacity to be
0.08 /  = 0.033 mL. (See Section 19.5.10 and Attachment 19E for more information about6
the uncertainty of a volume measurement.)

IMPORTED VALUES

When the estimate of an input quantity is taken from an external source, such as a book or a cali-
bration certificate, which states the uncertainty as a multiple of the standard deviation s, the stan-
dard uncertainty is obtained by dividing the stated uncertainty by the stated multiplier of s.

EXAMPLE 19.7  The uncertainty for a measured activity concentration, cA, is stated to be 0.015
Bq/L and the stated multiplier is 2. So, the standard uncertainty of cA is u(cA) = 0.015 / 2 =
0.0075 Bq/L.

If the estimate is provided by a source which gives a bound c for the error such that the interval
from x ! c to x + c contains the true value with 100γ % confidence (0 < γ < 1) but no other infor-
mation about the distribution is given, the measured result may be assumed to have a normal dis-
tribution, and the standard uncertainty may therefore be evaluated as
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u(x) ' c
z(1%γ) /2

(19.10)

The value of z(1 + γ) / 2 may be found in a table of quantiles of the standard normal distribution (see
Table G.1 in Appendix G).

EXAMPLE 19.8  The specific activity, x, of a commercial standard solution is stated to lie
within the interval (4530 ± 64) Bq/g with 95 % confidence. The standard uncertainty may
therefore be evaluated as u(x) = 64 / z0.975 = 64 / 1.96 = 33 Bq/g.

EVALUATION OF COVARIANCE

Evaluation of the covariance of two input estimates, xi and xj, whose uncertainties are evaluated
by Type B methods may require expert judgment. Generally, in such cases it is simpler to esti-
mate the correlation coefficient, r(xi,xj), first and then multiply it by the standard uncertainties,
u(xi) and u(xj) to obtain the covariance, u(xi,xj). The correlation coefficient must be a number
between !1 and +1. A correlation coefficient of zero indicates no correlation between the esti-
mates, while a value of ±1 indicates the strongest possible correlation. Usually, if the two input
estimates have a significant correlation, it is easy to guess the sign of the correlation coefficient,
but estimating its magnitude may require knowledge and experience.

If the input estimates are imported values (e.g., from a published reference), the only practical
method of evaluating their covariance is to use the correlation coefficient, if any, provided with
the estimates. When no correlation coefficient is stated, the input estimates must be assumed to
be uncorrelated.

In many cases when a correlation between two input estimates is suspected, the reason for the
suspicion is that identifiable random or systematic effects in the measurement process are known
to affect both estimates. It may be possible in such cases to include additional explicit variables
in the mathematical model to account for those effects, eliminating the need for Type B covar-
iance evaluations.

Sometimes two input estimates for one measurement model are explicitly calculated from other
measured values. Section 19.4.4 shows how one may evaluate the covariance for two such calcu-
lated values.
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u 2
c (y) 'j

N

i'1

Mf
Mxi

2

u 2(xi) % 2 j
N&1

i'1
j
N

j' i%1

Mf
Mxi

Mf
Mxj

u(xi,xj)

Uncertainty Propagation Formula

(19.11)

19.4.3  Combined Standard Uncertainty

19.4.3.1  Uncertainty Propagation Formula

Consider the mathematical model Y = f(X1,X2,�,XN). If x1, x2, �, xN are measured values of the
input quantities, Xi, and y = f(x1,x2,�,xN) is the calculated value of the output quantity, Y, the
combined standard uncertainty of y is obtained using the following formula.

Here u2(xi) denotes the estimated variance of xi , or the square of its standard uncertainty; u(xi,xj)
denotes the estimated covariance of xi and xj; Mf / Mxi (or My / Mxi) denotes the partial derivative of
f with respect to Xi evaluated at the measured values x1, x2, �, xN; and uc

2(y) denotes the combined
variance of y, whose positive square root, uc(y), is the combined standard uncertainty of y. The
partial derivatives, Mf / Mxi, are called sensitivity coefficients.

The preceding formula, called the �law of propagation of uncertainty� in the GUM, will be called
the �uncertainty propagation formula� or the �first-order uncertainty propagation formula� in this
document. Equation 19.11 is commonly used to define the combined standard uncertainty, but
note that the combined standard uncertainty is only an approximation of the true standard devia-
tion of the output estimate, and sometimes other definitions provide better approximations (e.g.,
see Section 19.4.5.1).7

Table 19.1 shows several rules for partial differentiation, which tend to be useful when one cal-
culates the sensitivity coefficients in the uncertainty propagation formula. Table 19.2 shows how
to propagate uncertainties in some common cases. The expressions for the combined standard
uncertainties shown in Table 19.2 may be derived from the uncertainty propagation formula
using the differentiation rules listed in Table 19.1.



Measurement Uncertainty

19-21JULY 2004 MARLAP

In the following equations the symbols F and G denote arbitrary expressions, which may contain the variables
x1,x2,...,xN. The symbol c denotes either a constant expression or any other expression that does not contain the
variable xi.

Mc
Mxi

' 0 M(F ± G)
Mxi

'
MF
Mxi

± MG
Mxi

M(F c)
Mxi

' cF c&1 MF
Mxi

Mxi

Mxi

' 1 M(FG)
Mxi

'
MF
Mxi

G % F MG
Mxi

M(eF)
Mxi

' eF MF
Mxi

Mxj

Mxi

' 0, if i … j M(F / G)
Mxi

'
(MF / Mxi)G & F (MG / Mxi)

G 2

M(ln F)
Mxi

'
MF / Mxi

F

M(cF)
Mxi

' c MF
Mxi

M(1 / F)
Mxi

'
&MF / Mxi

F 2

M(log10 F)
Mxi

'
MF / Mxi

(ln 10)F

TABLE 19.1 � Differentiation rules

SUMS AND
DIFFERENCES

If a and b are constants, then
u 2

c (ax ± by) ' a 2u 2(x) % b 2u 2(y) ± 2ab @ u(x,y)

PRODUCTS If x and y are measured values, then
u 2

c (xy) ' u 2(x)y 2 % x 2u 2(y) % 2xy @ u(x,y)
When x and y are nonzero, the formula may be rewritten as

u 2
c (xy) ' x 2y 2 u 2(x)

x 2
%

u 2(y)
y 2

%
2u(x,y)

xy

QUOTIENTS If x and y are measured values, then

u 2
c

x
y

'
u 2(x)

y 2
%

x 2u 2(y)
y 4

&
2x @ u(x,y)

y 3

When x is nonzero, the variance formula may be rewritten as

u 2
c

x
y

'
x 2

y 2

u 2(x)
x 2

%
u 2(y)

y 2
&

2u(x,y)
xy

EXPONENTIALS If a is a constant, then
u 2

c (eax ) ' a 2 e2ax u 2(x)
If n is a positive integral constant, then

u 2
c (x n ) ' n 2 x 2n & 2 u 2(x)

LOGARITHMS If a is a constant and ax is positive, then

u 2
c (ln ax) ' u 2(x)

x 2
and u 2

c (log10 ax) ' u 2(x)
(ln 10)2 x 2

. u 2(x)
(5.302)x 2

TABLE 19.2 � Applications of the first-order uncertainty propagation formula
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u 2
c (y) �� j

N

i��1

Mf
Mxi

2

u 2(xi) (19.12)

If the input estimates x1, x2, �, xN are uncorrelated, the uncertainty propagation formula reduces
to

Equation 19.12 is only valid when the input estimates are uncorrelated. Although this case occurs
frequently in practice, there are notable exceptions. When input estimates are obtained using the
same measuring devices or the same standard solutions, or when they are calculated from the
same data, there is a potential for correlation. For example, instrument calibration parameters
determined by least-squares analysis may be strongly correlated. Fortunately, the method of least
squares provides covariance estimates with almost no additional effort (see Attachment 19C). In
general, ignoring correlations between the input estimates may lead to overestimation or under-
estimation of the combined standard uncertainty.

EXAMPLE 19.9

Problem: A 6000-second gross-alpha measurement is performed on a test source prepared by
evaporating water on a stainless steel planchet. The measurement produces 120 alpha counts.
The preceding blank measurement on the instrument had a duration of 6000 s and produced 42
alpha counts. The estimated alpha-particle counting efficiency is 0.223 with a standard uncer-
tainty of 0.015. The sample volume analyzed is 0.05000 L, with a standard uncertainty of
0.00019 L. The alpha-particle emission rate per unit volume is described by the mathematical
model

cα '
NS / tS & NB / tB

g V
where

cα is the alpha-particle emission rate per unit volume;
NS is the source count (NS = 120);
NB is the blank count (NB = 42);
tS is the source count time (tS = 6000 s);
tB is the blank count time (tB = 6000 s);
g is the counting efficiency (g = 0.223); and
V is the volume analyzed (V = 0.0500 L).

What is the output estimate cα and what is its combined standard uncertainty, uc(cα)? (Use the
Poisson approximation for the uncertainties of NS and NB.)



Measurement Uncertainty

19-23JULY 2004 MARLAP

Solution: First compute the output estimate cα (alpha particles per second per liter).

cα '
NS / tS & NB / tB

gV
'

120/6000 & 42/6000
(0.223)(0.05000)

. 1.17 s&1 @ L&1

Then compute the combined standard uncertainty uc(cα). The only uncertainties included in the
model will be those associated with the counts NS and NB, the efficiency g, and the volume V.
There is no reason to suspect correlations between the measured values; so, the uncertainty
propagation formula becomes

u 2
c (cα) '

Mcα
MNS

2

u 2(NS) %
Mcα
MNB

2

u 2(NB) %
Mcα
Mg

2

u 2(g) %
Mcα
MV

2

u 2(V)

The sensitivity coefficients are evaluated using the differentiation rules shown in Table 19.1:

Mcα
MNS

'
M(NS / tS & NB / tB) / MNS

gV

'
M(NS / tS) / MNS & 0

gV

'
MNS / MNS

tSgV

'
1

tSgV
' 0.0149477 s&1 @ L&1

Mcα
MNB

'
M(NS / tS & NB / tB) / MNB

gV

'
0 & M(NB / tB) / MNB

gV

'
&MNB / MNB

tBgV

'
&1

tBgV
' &0.0149477 s&1 @ L&1

Mcα
Mg

' &
NS / tS & NB / tB

g 2V
Mg
Mg

' &
NS / tS & NB / tB

g 2 V
' &5.22834 s&1 @ L&1

Mcα
MV

' &
NS / tS & NB / tB

gV 2

MV
MV

' &
NS / tS & NB / tB

gV 2

' &23.3184 s&1 @ L&2

The Poisson approximation is used for the standard uncertainties of the counts NS and NB. So,

u2(NS) = NS = 120      and      u2(NB) = NB = 42
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u 2
c (y) 'j

N

i'1
u 2

i (y) (19.13)

u 2
c (y) 'j

N

i'1
u 2

i (y) % 2 j
N&1

i'1
j
N

j' i%1
r(xi,xj)ui(y)uj(y) (19.14)

Recall from the statement of the problem that u(g) = 0.015 and u(V) = 0.00019. When the
values of all these expressions are substituted into the uncertainty propagation formula, the
combined variance is 

u 2
c (cα) ' (0.0149477)2(120) % (&0.0149477)2(42) % (&5.22834)2(0.015)2

% (&23.3184)2(0.00019)2

' 0.0424 s&2 @ L&2

So, the combined standard uncertainty is uc(cα) =  . 0.21 s!1 @ L!1.0.0424

19.4.3.2  Components of Uncertainty

The product of |Mf / Mxi | and the standard uncertainty u(xi) is called the component of the com-
bined standard uncertainty generated by the standard uncertainty of xi , and may be denoted
by ui(y). When all the input estimates are uncorrelated, the combined standard uncertainty may be
written in terms of its components as follows.

Since uc
2(y) is the sum of the squares of the components ui(y), the combined standard uncertainty

tends to be determined primarily by its largest components. When the input estimates are corre-
lated, Equation 19.13 is replaced by

Recall that r(xi,xj) denotes the estimated correlation coefficient of xi and xj.

Figure 19.1 relates Equation 19.13 to the Pythagorean theorem about right triangles to illustrate
graphically how uncertainty components are added to produce the combined standard uncertainty
in the case of a model, y = f(x1,x2), with two uncorrelated input estimates, x1 and x2.
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8 When the two input estimates are correlated, the vectors that represent u1(y) and u2(y) may still be added graph-
ically, but they are no longer perpendicular. In this case the correlation coefficient, r(xi,xj), equals the cosine of the
angle between the two vectors. When there are more than two input quantities, the existence of correlations among
the input estimates makes the graphical addition method impractical.
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u 2
c (y) ' y 2 u 2(x1)

x 2
1

%
u 2(x2)

x 2
2

% @ @ @ %
u 2(xn)

x 2
n

%
u 2(z1)

z 2
1

%
u 2(z2)

z 2
2

% @ @ @ %
u 2(zm)

z 2
m

(19.15)

u 2
c (y) '

u 2
c f(x1 x2 @ @ @xn)

z 2
1 z 2

2 @ @ @z
2
m

% y 2 u 2(z1)

z 2
1

%
u 2(z2)

z 2
2

% @ @ @ %
u 2(zm)

z 2
m

(19.16)

u1(y)

u2(y)
uc(y)

uc
2(y) = u1

2(y) + u2
2(y)

FIGURE 19.1 � Addition of uncertainty components

In the figure, the first component, u1(y), is five times larger than the second component, u2(y),
and as a result the combined standard uncertainty, uc(y), is dominated by u1(y). Ignoring u2(y) in
this case would decrease the combined standard uncertainty by only about 2 % of its value.

When the model involves more than two input quantities, the addition process shown in the
figure may be iterated.8

19.4.3.3  Special Forms of the Uncertainty Propagation Formula

It is helpful to remember certain special forms of the uncertainty propagation formula. For
example, if the values x1, x2, �, xn and z1, z2, �, zm are uncorrelated and nonzero, the combined
standard uncertainty of y =  may be calculated from the formulax1x2 @ @ @xn

z1z2 @ @ @zm

As another example, suppose , where f is some specified function of x1, x2, �, xn ,y ' f(x1,x2,�,xn)

z1z2 @ @ @zm

all the zi are nonzero, and all the input estimates are uncorrelated. Then
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u(y,z) 'j
N

i'1
j
N

j'1

Mf
Mxi

Mg
Mxj

u(xi,xj) (19.17)

Equation 19.16 is particularly useful in radiochemistry, where f(x1,x2,�,xn) might be a net count
rate and z1z2@ @ @zm might be the product of the test portion size, chemical yield, counting effi-
ciency, decay factor, and other sensitivity factors.

EXAMPLE 19.10  Consider the preceding gross-alpha example. Equation 19.16 implies the
following equation for the combined variance of cα.

u 2
c (cα) '

u 2
c (NS / tS & NB / tB)

g 2V 2
% c 2

α
u 2(g )
g 2

%
u 2(V)

V 2

'
u 2(NS) / t 2

S % u 2(NB) / t 2
B

g 2V 2
% c 2

α
u 2(g )
g 2

%
u 2(V)

V 2

Then, since u2(NS) = NS and u2(NB) = NB,

u 2
c (cα) '

NS / t 2
S % NB / t 2

B

g 2V 2
% c 2

α
u 2(g )
g 2

%
u 2(V)

V 2

'
120 / (6000 s)2 % 42 / (6000 s)2

(0.223)2(0.0500 L)2
% (1.17 s&1 @L&1)2 0.0152

0.2232
%

(0.00019 L)2

(0.0500 L)2

' 0.0424 s&2 @ L&2

and uc(cα) = 0.21 s!1 @ L!1.

19.4.4  The Estimated Covariance of Two Output Estimates

Measured values obtained from two measurement processes may be correlated if some of the
same input estimates are used to calculate output estimates in both models. If the two measured
values are to be used as input quantities in a third model, their covariance must be estimated.

Suppose the combined set of input quantities in two mathematical models consists of X1, X2, �,
XN . Then the models can be expressed as Y = f(X1,X2,�,XN) and Z = g(X1,X2,�,XN), where each
of the measurands may actually depend on only a subset of the combined list of input quantities.
If the input estimates are x1, x2, �, xN and the output estimates are y = f(x1,x2,�,xN) and z =
g(x1,x2,�,xN), the covariance of y and z is estimated by
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u(y,z) 'j
N

i'1

Mf
Mxi

Mg
Mxi

u 2(xi) (19.18)

Since u(y,y) = uc
2(y), the preceding equation may be considered a generalization of the first-order

uncertainty propagation formula.

Even when all the input estimates, xi and xj, are uncorrelated, the output estimates, y and z, may
be correlated, but in this case Equation 19.17 reduces to the following.

EXAMPLE 19.11  A radiation counter is calibrated for a certain source geometry and the count-
ing efficiency is determined to be 0.423 with a standard uncertainty of 0.012. A 6000-second
blank measurement is performed and 108 counts are recorded. Next two 3000-second meas-
urements of a radioactive source in the required geometry are performed. The first measure-
ment produces 1210 counts and the second produces 1244 counts. The activity of the source is
calculated twice, using the model

A '
NS / tS & NB / tB

g
where
 A is the source activity;

NS is the count observed when the source is measured (1210 and 1244);
tS is the source count time (3000 s, negligible uncertainty);
NB is the count observed when the blank is measured;
tB is the blank count time (6000 s, negligible uncertainty); and
g is the counting efficiency (0.423 ± 0.012).

Let A1 and A2 denote the two calculated activities. Assuming all the input estimates are uncor-
related, estimate the covariance u(A1, A2).

The standard uncertainties of NS and NB in each measurement are evaluated using the Poisson
approximation. So, u2(NS) = NS and u2(NB) = NB. Then Equation 19.16 can be used to calculate
the combined standard uncertainty of each result, as shown below.

u 2
c (A) '

u 2(NS) / t 2
S % u 2(NB) / t 2

B

g 2
% A 2 u 2(g )

g 2

'
NS / t 2

S % NB / t 2
B

g 2
% A 2 u 2(g )

g 2
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Equation 19.18 for the covariance in this example becomes

u(A1,A2) '
MA1

MNB

MA2

MNB

u 2(NB) %
MA1

Mg

MA2

Mg
u 2(g)

The required sensitivity coefficients are found as follows.

MA
MNB

'
&1
tBg

MA
Mg

' &
NS / tS & NB / tB

g2
' &

A
g

For the first measurement

A1 '
1210 / 3000 & 108 / 6000

0.423
' 0.91095 Bq

uc(A1) '
1210 / 30002 % 108 / 60002

0.4232
% 0.910952 0.0122

0.4232
' 0.0379 Bq

MA1

MNB

'
&1

(6000)(0.423)
' &3.9401 × 10&4 Bq

MA1

Mg
' &

0.91095
0.423

' &2.1536 Bq

For the second measurement

A2 '
1244 / 3000 & 108 / 6000

0.423
' 0.93775 Bq

uc(A2) '
1244 / 30002 % 108 / 60002

0.4232
% 0.937752 0.0122

0.4232
' 0.0387 Bq

MA2

MNB

'
&1

(6000)(0.423)
' &3.9401 × 10&4 Bq

MA2

Mg
' &

0.93775
0.423

' &2.2169 Bq
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9 The uncertainty propagation formula also provides finite estimates of variance in cases where, strictly speaking,
the true variance is infinite or undefined. For example, if x has a normal or Poisson distribution, the variance of 1 / x
is undefined, although the formula provides a finite estimate of it. On the other hand, if the relative standard uncer-
tainty of x is small, the combined variance uc

2(1 / x) will almost always be consistent with observation, making the
estimate useful in practice.
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u 2
c (y) 'j

N

i'1

Mf
Mxi

2
u 2(xi) %j

N

i'1
j
N

j'1

1
2

M2f
MxiMxj

2
%

Mf
Mxi

M3f

MxiMx 2
j

u 2(xi)u 2(xj) (19.19)

So, the covariance is estimated to be

u(A1,A2) ' (&3.9401 × 10&4)(&3.9401 × 10&4)(108) % (&2.1536)(&2.2169)(0.012)2

' 7.043 × 10&4 Bq2

The estimated correlation coefficient is

r(A1,A2) '
u(A1,A2)

u(A1)u(A2)
'

7.043 × 10&4

(0.0379)(0.0387)
' 0.48 .

19.4.5  Special Considerations for Nonlinear Models

19.4.5.1  Uncertainty Propagation for Nonlinear Models

The first-order uncertainty propagation formula tends to give better variance estimates when the
function f is linear, because the formula is derived from a linear approximation of f (i.e., a first-
order Taylor polynomial). Generally, obtaining a reliable estimate of uc

2(y) using the first-order
formula requires (at least) that whenever f is nonlinear in one of the input quantities Xi , the rela-
tive uncertainty of the input estimate xi must be small.9 In radiochemistry, for example, this fact
implies that the uncertainty of an instrument calibration factor, chemical yield, or test portion
size should be kept small.

If all the input estimates xi are uncorrelated and distributed symmetrically about their means, a
better approximation of uc

2(y) may be made by including higher-order terms in the uncertainty
propagation formula, as shown below.

See also Section 5.1.2 of the GUM. In some cases, if the uncertainties of the input estimates are
extremely large, even Equation 19.19 may be inadequate.
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EXAMPLE 19.12  Suppose x and y are independent estimates of input quantities X and Y,
respectively. Then the combined variance of the product p = xy according to the first-order
uncertainty propagation formula is

uc
2(p) = y2 u2(x) + x2 u2(y)

For example, suppose x = 5, with u(x) = 0.5, and y = 10, with u(y) = 3. Then p = 50, and the
first-order formula gives the combined standard uncertainty

uc(p) =  =  15.8102 0.52 % 52 42

When higher-order terms are included,

u 2
c (p) ' y 2 u 2(x) % x 2 u 2(y) % 0 × u 4(x) % 1

2
u 2(x) u 2(y) % 1

2
u 2(y) u 2(x) % 0 × u 4(y)

' y 2 u 2(x) % x 2 u 2(y) % u 2(x)u 2(y)

With numbers,
uc(p) =  =  15.9102 0.52 % 52 32 % 0.52 32

Since 15.9 is only slightly greater than 15.8, in this example the first-order approximation
appears adequate.

The combined variance of the quotient q = x / y according to the first-order formula is

uc
2(q) =  + u 2(x)

y 2
q 2 u 2(y)

y 2

Using the same values for x and y again, q = 0.5 and the first-order formula gives

uc(q) =  =  0.1580.52

102
% 0.52 32

102

When the higher-order terms are included,



Measurement Uncertainty

19-31JULY 2004 MARLAP

Mq
Mx

'
1
y

M2q
Mx 2

' 0 M3q
Mx 3

' 0

Mq
My

' &
x
y 2

M2q
My 2

'
2x
y 3

M3q
My 3

' &
6x
y 4

M2q
Mx My

' &
1
y 2

M3q
Mx My 2

'
2
y 3

M3q
My Mx 2

' 0

u 2
c (q) ' u 2(x)

y 2
% q 2 u 2(y)

y 2
% 0 × u 4(x) % 1

2
&

1
y 2

2

%
1
y

2
y 3

u 2(x) u 2(y)

%
1
2

&
1
y 2

2

% 0 u 2(y) u 2(x) % 1
2

4x 2

y 6
% &

x
y 2

&
6x
y 4

u 4(y)

'
u 2(x)

y 2
1 % 3 u 2(y)

y 2
% q 2 u 2(y)

y 2
1 % 8 u 2(y)

y 2

With numbers,

uc(q) ' 0.52

102
1 % 3 32

102
% 0.52 32

102
1 % 8 32

102
' 0.205

In this case, since 0.205 is substantially larger than 0.158, the first-order formula is inadequate. 

If the standard uncertainty of y is much larger than 3 (in this case 30 % in relative terms), even
the higher-order formula begins to fail here.

19.4.5.2  Bias due to Nonlinearity

As noted earlier, when the measurement model has the form Y = f(X1,X2,�,XN) and the input
estimates are x1, x2, �, xN, the output estimate is given by y = f(x1,x2,�,xN). If the function, f, is
nonlinear, the output estimate, y, may be a biased estimate of the value of the output quantity, Y,
even if the model is correct and each of the input estimates, xi, is an unbiased estimate of the
associated input quantity (Ku, 1966).

For example, if the model is  and X is an unbiased estimator for some quantity θ,Y ' f(X) ' X 2

then  is a biased estimator for the quantity . (I.e., the mean of the square is not equal toY ' X 2 θ2

the square of the mean.) Since the variance of X is  and the mean of X isV(X) ' E(X 2) & E(X)2

E(X) = θ, the mean of Y in this case is given by
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E(Y) ' E(X 2) ' E(X)2 % V(X) ' θ2 % V(X) (19.20)

Bias(y) . 1
2 j

N

i'1
j
N

j'1

M2f
MxiMxj

u(xi,xj) (19.21)

Bias(y) . 1
2 j

N

i'1

M2f

Mx 2
i

u 2(xi) % j
N&1

i'1
j
N

j' i%1

M2f
MxiMxj

u(xi,xj) (19.22)

So, the bias of  as an estimator for  is equal to the variance of X. In metrology the trueY ' X 2 θ2

variance of the estimator X is unknown of course, but the bias of an output estimate, y = x2, can
be estimated by u2(x), the square of the standard uncertainty of the input estimate, x.

More generally, the portion of the bias of y associated with the nonlinearity of the model may be
estimated, if necessary, by the formula

In practice, Equation 19.21 is equivalent to the following (Ku, 1966).

This bias is usually negligible in comparison to the combined standard uncertainty, uc(y), if the
relative standard uncertainty of each input estimate is small. (These equations are based on an
approximation of the function f by a second-order Taylor polynomial.)

Note that the bias calculated by Equations 19.21 and 19.22 may not represent the overall bias of
the output estimate. It represents only the bias associated with nonlinearity of the mathematical
model. If the input estimates are biased or the model is inexact, the overall bias may be different.

MARLAP does not recommend correcting the output estimate for the estimated bias due to non-
linearity. Instead, the standard uncertainties of the input estimates should be kept small enough to
make this portion of the bias negligible. For a typical radiochemical measurement model
involving a net count rate divided by a denominator consisting of a product of factors such as the
counting efficiency, test portion size, and chemical yield, this requirement means keeping the
uncertainties of the counting times and all the factors in the denominator relatively small. The
relative uncertainties of the raw counts may be large.
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EXAMPLE 19.13  If x is an estimate of a positive quantity X, the bias of y = 1 / x as an estimate
of 1 / X may be approximated using Equation 19.22. Since y is a function of only one variable,
the partial derivatives of y are the same as ordinary derivatives. The first derivative is dy / dx =
!x!2 and the second derivative is d2y / dx2 = 2x!3. So, the bias due to nonlinearity can be esti-
mated as Bias(y) . (1 /2) (2x!3)u2(x) = u2(x) /x3. 

Suppose x = 1.2 and its standard uncertainty is 0.2. Then the calculated value of y is 1 / 1.2, or
0.833, and the estimated bias of y due to nonlinearity is 0.22 / 1.23 = 0.023.

EXAMPLE 19.14  If x and y are uncorrelated, unbiased estimates of quantities X and Y, respec-
tively, the bias of the product z = xy as an estimate of XY is given approximately by

Bias(z) . 1
2

M2z
Mx 2

u 2(x) % M2z
My 2

u 2(y)

which equals zero, since . (In this case, it can be shown that the bias ofM2z / Mx 2 ' M2z / My 2 ' 0
z is exactly zero, not just approximately zero.)

EXAMPLE 19.15  If t is an estimate of the decay time T for a radionuclide whose decay con-
stant is λ (assumed to have negligible uncertainty), the bias of the estimated decay factor D =
e!λt is given approximately by

Bias(D) . 1
2
M2D
Mt 2

u 2(t) ' 1
2
λ2e&λ t u 2(t)

and the relative bias is λ2 u2(t) / 2. For example, suppose the radionuclide is 228Ac, which has a
half-life of T1/2 = 6.15 h, and the decay time has a standard uncertainty of u(t) = 2 h (large for
the sake of illustration). Then the decay constant λ equals ln(2) / 6.15 = 0.112707 h!1. The bias
equation above implies that the relative bias of the decay factor D due to the uncertainty of t is
approximately

Bias(D)
D

. 1
2
λ2u 2(t) ' 1

2
(0.112707)2 (2)2 ' 0.025

or 2.5 %. Note that the relative bias of D is small if  is small. (In this example,u 2(t) / T 2
1/2

u2(t) /  = 22 / 6.152 = 0.1058.)T 2
1/2
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19.4.6  Monte Carlo Methods

An alternative to uncertainty propagation is the use of computerized Monte Carlo methods to
propagate not the uncertainties of input estimates but their distributions. Given assumed distribu-
tions for the input estimates, the method provides an approximate distribution for the output esti-
mate, from which the combined standard uncertainty or an uncertainty interval may be derived.
The joint working group responsible for the GUM is reported to be developing new guidance on
the use of such methods. Monte Carlo methods may be particularly useful when the distribution
of the result is not approximately normal. However, these methods are most effective when the
model can be formulated in terms of independent input estimates.

19.5 Radiation Measurement Uncertainty

19.5.1  Radioactive Decay

Although it is impossible to know when an unstable nucleus will decay, it is possible to calculate
the probability of decay during a specified time interval. The lifetime of the nucleus has an
exponential distribution, which is a model for the life of any object whose expected remaining
life does not change with age.

The exponential distribution is described by one parameter λ, which measures the expected frac-
tional decay rate. This parameter λ is called the decay constant and equals ln(2) / T1/2 , or approx-
imately 0.693 / T1/2 , where T1/2 is the half-life of the radionuclide (sometimes denoted by t1/2). The
half-life is the same as the median of the exponential distribution.

The probability that an atom will survive until time t without decaying is equal to e!λt. Thus the
probability of survival decreases exponentially with time. Consequently, when a large number of
atoms of the same radionuclide are considered, the expected number of surviving atoms also
decreases exponentially with time, as shown in Figure 19.2.

Since the probability that an atom survives until time t is equal to e!λt, it follows that the proba-
bility of decay during this time is 1 ! e!λt.
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f(t) = e−λt

FIGURE 19.2 � Expected fraction of atoms remaining at time t

19.5.2  Radiation Counting

Undoubtedly the best-known rule of radiation measurement statistics is the fact that the counting
uncertainty for a gross radiation measurement can be evaluated as the square root of the observed
counts. The square-root rule is useful, because it permits the estimation of a potentially
significant uncertainty component without replicate measurements. Although the rule is usually
valid as an approximation, for reasons which are discussed below, there are limits to its applica-
bility. It is also important to remember that the counting uncertainty is only one component of the
total measurement uncertainty.

19.5.2.1  Binomial Model

When a source containing a radionuclide is placed in a detector, the probability that a particular
atom of the radionuclide will produce a count is the product of three factors: the probability of
decay, the probability of emission of the radiation being measured, and the probability of
detection. According to the exponential decay model, the probability of decay is equal to

, where λ is the decay constant and tS is the counting time. The probability of radiation1 & e&λtS
emission, denoted here by F, is a characteristic of the radionuclide. The probability of detection
is the counting efficiency, g. Then the probability that an atom will generate a count is p = 

Fg.(1 & e&λtS)

If the source initially contains n atoms of the radionuclide, the instrument is stable, and its back-
ground is negligible, the number of observed counts N has a binomial distribution with parame-
ters n and p. In general, if an experiment has only two possible outcomes, which may be called
�success� and �failure,� and the probability of success is p, then the number of successes ob-
served when the experiment is repeated in n independent trials has a binomial distribution with
parameters n and p.
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10 In the rare cases when the Poisson model is inadequate and the binomial model is required, if the instrument
background level is negligible, the standard deviation of the source count NS can be estimated by . If the(1 � p)NS
background is not negligible, the variance of NS is the sum of components contributed by the background and the
source. So, if a Poisson background is measured for time tB and NB counts are observed, the background
contribution to NS is estimated by NBtS / tB, and the source contribution is estimated by (NS ! NBtS / tB). Then the
standard deviation of NS may be estimated by combining the estimated variances of these two contributions, as
shown below.

σNS
. NB

tS

tB

% NS & NB

tS

tB

(1 & p) ' (1 � p)NS % pNB

tS

tB

These expressions for the standard deviation of NS are appropriate only when the source counts are generated by a
single radionuclide or by one radionuclide plus the instrument background.

11  The coefficient of variation of a nonnegative random variable is defined as the ratio of its standard deviation to
its mean (see Attachment 19A).

12 The negative bias of  as an estimator for σN is largely eliminated if one replaces it by . MARLAPN N % 0.25
recommends the estimator  although it is positively biased.N % 1
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Actually the probability p is a random variable, because the counting efficiency for an instrument
and source can vary for a number of reasons, such as source placement, dead time and other
instrument characteristics. These variations generate measurement uncertainty, but their effects
are not included in the �counting uncertainty.� The counting uncertainty is the standard deviation
of the theoretical distribution of counts observed in a fixed time period when the efficiency is
held constant. Thus, the actual variability observed in repeated measurements of a single radio-
active source may be greater than the theoretical counting uncertainty.

19.5.2.2  Poisson Approximation

The mean and variance of the binomial distribution are np and np(1 ! p), respectively. In radia-
tion counting, the value of p is usually small enough that the factor 1 ! p in the variance can be
ignored (i.e., treated as 1). When this is true, the binomial distribution can be approximated by a
Poisson distribution with mean µ = np. The variance of a Poisson distribution equals the mean;
so, both can be estimated by the same measured result N, and the standard deviation can be esti-
mated by .10N

When µ is large,  is an excellent estimator for the standard deviation, σN, but the estimate mayN
be poor when µ is small. For example, if µ = 100, the coefficient of variation of  is only aboutN
5 % and its bias (caused by the nonlinearity of the square-root function) is negligible.11 If µ = 10,
the coefficient of variation is more than 16 % and there is a negative bias of more than 1 %. If
µ = 1, the coefficient of variation is more than 63 % and the negative bias is more than 22 %.
Furthermore, when µ is small, it is possible to observe zero counts, so that  = 0. MARLAPN
recommends that  be replaced by  when extremely low counts are possible (see alsoN N % 1
Attachment 19D).12
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13 It is possible to evaluate the uncertainties associated with the decay and ingrowth of a small number of short-lived
atoms before counting using the binomial model, but under the stated conditions, the assumption of Poisson
counting statistics simplifies the calculation. A more complete evaluation of uncertainty may be necessary if the
same source is counted more than once.
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A sum of independent Poisson quantities also has a Poisson distribution. So, when the Poisson
approximation is valid for all the sources of counts in a counting measurement, the total count
obeys Poisson counting statistics as well.

If a short-lived radionuclide (large λ) is counted in a high-efficiency detector (large g), the prob-
ability p that an atom placed in the detector will produce a count may be so large that the Poisson
approximation is invalid. In this case the Poisson approximation overestimates the counting un-
certainty; however, it is important to consider that the statistical model described thus far repre-
sents only the process of counting. In most cases previous steps in the measurement process
decrease the probability that one of the atoms of interest initially present in the test portion (the
portion of sample taken for analysis) will produce a count. If a correction for decay before count-
ing is performed, the decay factor must be included in p. If the measured activity of a (single)
decay product is used to estimate the activity of a parent, p must include both ingrowth and decay
factors. If a chemical extraction is performed, the recovery factor must be considered. When
these factors are included, the Poisson model is usually valid. Note, however, that these factors
must be measured and their standard uncertainties evaluated and propagated, increasing the total
measurement uncertainty even further.13

Both the binomial and Poisson models may be invalid if one atom can produce more than one
count during the measurement. This situation occurs when the activity of a parent is estimated
from the total count produced by the parent and a series of short-lived progeny (Lucas and
Woodward, 1964; Collé and Kishore, 1997). For example when 222Rn is measured by counting
the emissions of the parent and its progeny, an atom of 222Rn may produce several counts as it
decays through the short-lived series 218Po, 214Pb, 214Bi and 214Po, to the longer-lived 210Pb.
Another example is the measurement of 234Th by beta-counting a source that contains 234Th and
its short-lived progeny, 234mPa.

Both counting models may also be invalid if the total dead time of the measurement is significant
(see Section 19.5.3.1).

Instrument background measurements are usually assumed to follow the Poisson model. This
assumption is reasonable if the background counts are produced by low levels of relatively long-
lived radionuclides. However, the true background may vary between measurements (e.g., cos-
mic background). Furthermore, the measured background may include spurious instrument-
generated counts, which do not follow a Poisson distribution. Generally, the variance of the ob-
served background is somewhat greater than the Poisson counting variance, although it may be
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u 2(R) ' N
t 2

%
N 2

t 4
u 2(t) (19.23)

less for certain types of instruments, such as those that use parallel coincidence counters to com-
pensate for background instability (Currie et al., 1998). Departures from the Poisson model may
be detected using the chi-squared test described in Section 18B.2 of Attachment 18B; however,
deviations from the model over short time periods may be small and difficult to measure.

19.5.3  Count Time and Count Rate

Suppose a radiation counting measurement of duration t is made for the purpose of estimating a
mean count rate r, assumed to be constant, and the result of the measurement (in counts) has a
distribution that is approximately Poisson with mean rt. If t is known precisely, the best estimate
of r given a single observation, N, is the measured count rate R = N / t, and the best estimate of
the variance of the measured rate is u2(R) = N / t2 = R / t. Under the Poisson assumption, even if
repeated measurements are made, the best estimates of the count rate and its variance are ob-
tained by pooling the counts and count times and using the same formulas.

In fact, the count time t is known imperfectly; so a more complete estimate of the variance of R is

The uncertainty of t may be ignored if u(t) / t << 1 / , that is, if the relative standard uncer-N
tainty of t is much less than 1 over the square root of the count.

EXAMPLE 19.16  A source is counted for t = 100 s, where t has standard uncertainty u(t) =
0.1 s, and N = 25 counts are observed. Thus, the observed count rate, R, equals 0.250 s!1.
When u(t) is ignored, the combined standard uncertainty of R is uc(R) =  = 0.050 s!1.N / t 2

When u(t) is included, the combined standard uncertainty is

uc(R) ' N
t 2

%
N 2

t 4
u 2(t) ' 25

1002
%

252

1004
0.12 . 0.050 s&1

In this case the difference between the two uncertainty estimates is negligible.

EXAMPLE 19.17  A source is counted for t = 100 s, where u(t) = 1 s, and N = 10,609 counts are
observed. The count rate, R, equals N / t, or 106.09 s!1. When u(t) is ignored, uc(R) =  =N / t 2

1.03 s!1. When u(t) is included,
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14 If the mean count rate, r, is constant, the waiting times between events are independent exponentially distributed
random variables with parameter λ = r. Therefore, the total time required to obtain n counts is the sum of the n
waiting times, which has a gamma distribution with parameters α = n and λ = r (or α = n and β = 1/λ = 1/r).
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uc(R) ' N
t 2

%
N 2

t 4
u 2(t) ' 10,609

1002
%

10,6092

1004
12 . 1.48 s &1

In this example the two uncertainty estimates are clearly different, although both are relatively
small (1 % to 1.4 %).

Sometimes a radiation counter is set to acquire a predetermined number of counts. In this case
the number of counts is a constant and only the count time varies. If the mean count rate does not
change appreciably during the measurement, then Equation 19.23 may still be used.14

19.5.3.1  Dead Time

The dead time for a counting instrument is the minimum separation, τ, between two events re-
quired for the instrument to process and record both. Theoretical models for dead time are gen-
erally of two types. If the dead time for one event may be extended by a second event that arrives
before the first has been processed, the system is called �paralyzable� and the dead time is called
�extendable.� Otherwise, the system is called �non-paralyzable� and the dead time is called �non-
extendable� (Knoll, 1989; Turner, 1995; NCRP, 1985). Both models are idealized. The behavior
of an actual counting system tends to fall between the two extremes. At low count rates,
however, both models give essentially the same predictions.

At low count rates the observed count rate, N / t, may be corrected for dead time by dividing by
the factor 1 ! Nτ / t. Many counting instruments perform the correction automatically by ex-
tending the real time t of the measurement to achieve a desired live time, tL. Since tL = t ! Nτ, the
corrected count rate is simply N / tL. When the dead time rate for the measurement is low, the
variance of the corrected count rate may be estimated as . Thus, the Poisson model remainsN / t 2

L
adequate if the �count time� is equated with the live time. When the dead time rate is high (above
20 %), the same estimate may not be adequate (NCRP, 1985). In this case the measurement
should be repeated, if possible, in a manner that reduces the dead time rate.

Dead time effects may be evaluated experimentally to confirm that they do not invalidate the
Poisson model at the count rates expected for typical measurements. The chi-squared test de-
scribed in Section 18B.2 of Attachment 18B can be used for this purpose.
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15 The chi-squared distribution is a special case of a gamma distribution, whose relationship to the Poisson distribu-
tion is described by Hoel et al. (1971) and Stapleton (1995). This relationship is the basis for the two formulas in
Equation 19.24. The relationship is such that if X is chi-squared with 2N degrees of freedom and Y is Poisson with
mean µ, then Pr[X # 2µ] = Pr[Y $ N].
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rlower ' χ
2
(1&γ) /2(2N) 2t

rupper ' χ
2
(1%γ) /2(2N % 2) 2t

(19.24)

19.5.3.2  A Confidence Interval for the Count Rate

When the Poisson model of radiation counting is valid, lower and upper confidence limits for the
mean count rate r given an observation of N counts in time t may be calculated as follows:15

Here γ is the desired confidence coefficient, or the minimum probability of coverage, and for any
ν, χp

2(ν) denotes the p-quantile of the chi-squared distribution with ν degrees of freedom (see
Table G.3 in Appendix G). If ν = 0, the chi-squared distribution χ2(ν) is degenerate. For our
purposes, χp

2(0) should be considered to be 0.

EXAMPLE 19.18  Suppose 10 counts are observed during a 600-second instrument background
measurement. Then the 95 % confidence limits for the background count rate are

rlower '
χ2

0.025(20)
(2)(600)

'
9.59078

1200
' 0.00799 s &1

rupper '
χ2

0.975(22)
(2)(600)

'
36.7807

1200
' 0.03065 s &1

EXAMPLE 19.19  Suppose 0 counts are observed during a 600-second measurement. Then the
95 % confidence limits for the count rate are

rlower '
χ2

0.025(0)
(2)(600)

' 0 s &1

rupper '
χ2

0.975(2)
(2)(600)

'
7.3778
1200

' 0.00615 s &1
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19.5.4  Instrument Background

As noted above, single-channel background measurements are usually assumed to follow the
Poisson model, although there may be effects which increase the variance beyond what the model
predicts. For example, cosmic radiation and other natural sources of instrument background may
vary between measurements, the composition of source holders and containers may vary, the
instrument may become contaminated by sources, or the instrument may simply be unstable. For
certain types of instruments, the Poisson model may overestimate the background variance
(Currie et al., 1998). If the background does not closely follow the Poisson model, its variance
should be estimated by repeated measurements.

The �instrument background,� or �instrument blank,� is usually measured with source holders or
containers in place, since the presence of the container may affect the count rate. In many cases,
perhaps most, it is not feasible to use the same container during both the background and test
source measurements, but nearly identical containers should be used. Variations in container
composition may affect the background count rate. If test sources contain enough mass to atten-
uate background radiation, then it is best to use a similar amount of blank material during the
background measurement.

If repeated measurements demonstrate that the background level is stable, then the average, , ofx̄
the results of many similar measurements performed over a period of time may give the best esti-
mate of the background. In this case, if all measurements have the same duration, the experi-
mental standard deviation of the mean, , is also a good estimate of the measurement uncer-s(x̄)
tainty. Given the Poisson assumption, the best estimate of the uncertainty is still the Poisson esti-
mate, which equals the square root of the summed counts, divided by the number of measure-
ments, but the experimental standard deviation may be used when the Poisson assumption is
invalid.

If the background drifts or varies nonrandomly over time (i.e., is nonstationary), it is important to
minimize the consequences of the drift by performing frequent blank measurements.

If the background variance includes a small non-Poisson component, that component can be esti-
mated from historical background data and added to the calculated Poisson component. A chi-
squared statistic may be used to detect and quantify non-Poisson background variance (Currie,
1972; see also Section 18B.3 of Attachment 18B), but chi-squared provides an unbiased estimate
of the additional variance only if the background remains stationary while the data are being
collected. If the observed background counts, in order, are N1, N2, �, Nn and the corresponding
counting intervals are t1, t2, �, tn , then the quantity
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16 Each term of the sum is an unbiased estimator for the non-Poisson variance of the difference between successive
measurements of the background. Note that  is an unbiased estimator for the total variance and(Ni%1 / ti%1 & Ni / ti)

2

, which equals , is an unbiased estimator for the Poisson(Ni%Ni%1) / ti ti%1 (Ni%Ni%1) / (ti% ti%1) × (1/ ti % 1/ ti%1)
variance.
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ξ2
B '

1
n � 1 j

n�1

i'1

Ni%1

ti%1

�
Ni

ti

2

�
Ni % Ni%1

titi%1

(19.25)

may be used to estimate the non-Poisson variance of a net count rate due to background even if
the background is not stationary.16 The distribution of  is not simple, and  may even assumeξ2

B ξ2
B

negative values, which are clearly unrealistic. So, if this estimator is used, it should be calculated
for several data sets and for more than one instrument, if possible, to give an indication of its
reliability. Although replicate measurements are involved, this type of evaluation of uncertainty
should be considered a Type B method.

If background and test source measurements are performed under different conditions, the back-
ground measurement may be biased. Such a bias may occur, for example, if test sources are
counted in containers or on planchets which are not present during background measurements. A
situation of this kind should be avoided if possible.

When instrument background levels are low or when count times are short, it is possible that too
few counts will be observed to provide an accurate estimate of the measurement uncertainty.
Attachment 19D describes a method for choosing an appropriate coverage factor when only few
counts are observed.

19.5.5  Radiochemical Blanks

Instrument background is only one of the sources of counts observed when an analyte-free
sample is analyzed. Other sources may include contaminants in the tracers, reagents, and glass-
ware used for measurements. Contamination of this type tends to be most significant when the
analytes are naturally occurring radionuclides, such as isotopes of uranium, thorium, and radium;
but nonnatural contaminants may also be present in some radiochemical tracers.

The level of contamination may be determined by analyzing reagent blanks or other process
blanks alongside laboratory samples (see Chapter 18). Alternatively, if the contaminant is present
in a specific reagent or tracer solution, its concentration in the solution may be measured and
incorporated into the mathematical model of the measurement. Regardless of which method of
evaluation is used, it is important to remember that the concentration of contaminant may vary
from one reagent lot to another, and that the amount of contaminant in the prepared source may
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be affected by incomplete recovery during the chemical separation and purification steps of the
analytical process.

If the amount of blank contaminant varies between measurements (e.g., because the analyte is
present at varying levels in the laboratory environment), it is usually necessary to determine the
blank level and its uncertainty by replicate measurements (a Type A evaluation). In this case,
using the pure Poisson model for the uncertainty of the blank correction is inappropriate. Repli-
cate measurements are also more appropriate if the causes of blank contamination are simply not
well understood.

If there is no observable contamination when analyte-free samples are analyzed, the radiochemi-
cal blank may be only a blank source, which mimics the geometry and composition of an actual
test source. In this case the laboratory should routinely analyze method blanks to check for con-
tamination (see Chapter 18) and take corrective action if contamination is found.

19.5.6  Counting Efficiency

The counting efficiency for a measurement of radioactivity (usually defined as the detection
probability for a particle or photon of interest emitted by the source) may depend on many fac-
tors, including source geometry, placement, composition, density, activity, radiation type and
energy and other instrument-specific factors. The estimated efficiency is sometimes calculated
explicitly as a function of such variables (in gamma-ray spectrometry, for example). In other
cases a single measured value is used (e.g., alpha-particle spectrometry). If an efficiency function
is used, the uncertainties of the input estimates, including those for both calibration parameters
and sample-specific quantities, must be propagated to obtain the combined standard uncertainty
of the estimated efficiency. Calibration parameters tend to be correlated; so, estimated covari-
ances must also be included. If a single value is used instead of a function, the standard uncer-
tainty of the value is determined when the value is measured.

EXAMPLE 19.20  Fifteen sources in the same geometry are prepared from a standard solution
and used to calibrate a radiation counter. The specific activity of the standard is 150.0 Bq/g
with a combined standard uncertainty of 2.0 Bq/g. The steps of the calibration are as follows:

1. A 1-milliliter aliquant of the standard solution is added by pipet to each source and
weighed on an analytical balance. The solution contains the radionuclide of interest
dissolved in 0.3 M nitric acid, whose density at the current room temperature is
1.0079 g/mL. The density of the solution is used only to calculate the buoyancy-correction
factor for the mass measurements, which equals 1.001028 in this case (see Attachment
19E). The uncertainties of the buoyancy-corrected masses are considered negligible.
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2. A blank measurement is made. The blank count time is 6000 s. The number of blank
counts observed is 87.

3. Each source is counted once on the instrument for 300 s.

The radionuclide is long-lived; so, no decay corrections are needed. The uncertainties of the
count times are assumed to be negligible.

The mathematical model for the calibration is:

g ' 1
n j

n

i'1

NS,i / tS & NB / tB

mi aS

where
g is the counting efficiency;
n is the number of sources (15);
NS, i is the gross count observed during the measurement of the ith source;
tS is the source count time (300 s);
NB is the observed blank count (87);
tB is the blank count time (6000 s);
mi is the mass of standard solution added to the ith source; and
aS is the specific activity of the standard solution (150.0 Bq/g).

For the purpose of uncertainty evaluation, it is convenient to rewrite the model as

g ' R
aS

where

R '
1
n j

N

i'1
Ri and Ri '

NS,i / tS & NB / tB

mi

, i ' 1,2, ...,n

The values Ri and their average, , are estimates of the count rate produced by 1 g of the stan-R
dard solution, while  is an estimate of the count rate produced by 1 Bq of activity. TheR / aS
standard uncertainty of  can be evaluated experimentally from the 15 repeated measure-R
ments. Since only one blank measurement is made, the input estimates Ri are correlated with
each other. The covariance between Ri and Rj, for i … j, may be estimated as

u(Ri,Rj) '
MRi

MNB

MRj

MNB

u 2(NB) ' &1
tB mi

&1
tB mj

u 2(NB) '
u 2(NB)

t 2
B mi mj
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However, the correlation is negligible here because the uncertainty of the blank count, NB, is
much smaller than the uncertainty of each source count, NS,i. So, the input estimates Ri will be
treated as if they were uncorrelated, and the following equations will be used to calculate the
combined standard uncertainty of g:

u 2(R) ' s 2(R) ' 1
n (n & 1) j

n

i'1
(Ri & R)2

uc(g ) ' u 2(R)

a 2
S

% g 2 u 2(aS)

a 2
S

Assume the following data were obtained for the 15 calibration sources.

Source number,
i

Uncorrected
mass (g)

Buoyancy-
corrected mass,

 mi / g
Gross count, NS,i Ri / (s!1 @ g!1)

1 1.0056 1.00663 18,375 60.832
2 1.0031 1.00413 18,664 61.943
3 1.0058 1.00683 18,954 62.737
4 1.0082 1.00924 19,249 63.562
5 1.0069 1.00793 19,011 62.857
6 1.0074 1.00843 18,936 62.578
7 1.0048 1.00583 18,537 61.417
8 1.0069 1.00794 18,733 61.937
9 1.0031 1.00413 18,812 62.434
10 1.0079 1.00894 18,546 61.258
11 1.0063 1.00734 18,810 62.229
12 1.0067 1.00774 19,273 63.736
13 1.0055 1.00653 18,893 62.554
14 1.0091 1.01014 18,803 62.033
15 1.0030 1.00403 18,280 60.674

Average,  / (s!1 @ g!1):R
Experimental standard deviation, s(Ri) / (s!1 @ g!1):

Experimental standard deviation of the mean, s( ) / (s!1 @ g!1):R

62.1854
0.8910
0.2301

Then the estimated counting efficiency is

g ' R
aS

'
62.1854 s&1 @g&1

150.0 Bq/g
' 0.4146
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u(g ) ' u 2(R)

a 2
S

% g 2 u 2(aS)

a 2
S

% φ2 (19.26)

u(g ) ' (0.2301 s&1 @g&1)2

(150.0 Bq/g)2
% 0.41462 (2.0 Bq/g)2

(150.0 Bq/g)2
% 0.0122 ' 0.0076 (19.27)

and the (combined) standard uncertainty of g is given by

u(g ) ' (0.2301 s&1 @g&1)2

(150.0 Bq/g)2
% 0.41462 × (2.0 Bq/g)2

(150.0 Bq/g)2
' 0.005736

which may be rounded to 0.0057. (Note that the relative standard uncertainty of g is approxi-
mately 1.4 %, which is large enough to justify neglecting the small uncertainties of the
masses.)

In fact the standard uncertainty of g calculated in the preceding example may be incomplete. The
true counting efficiency may vary from source to source because of variations in geometry, posi-
tion and other influence quantities not explicitly included in the model. So, the standard uncer-
tainty of g should include not only the standard uncertainty of the estimated mean, as calculated
in the example, but also another component of uncertainty due to variations of the true efficiency
during subsequent measurements. The additional component may be written as gφ, where φ is the
coefficient of variation of the true efficiency. Then the total uncertainty of g is obtained by
squaring the original uncertainty estimate, adding , and taking the square root of the sum.g2φ2

In the example above, the experimental variance of the ratios, Ri, may be used to estimate φ.
Section 18B.2 of Attachment 18B, describes an approach for estimating such �excess� variance
in a series of measurements. When the methods of Section 18B.2 are used with these data, the
resulting estimate of φ is approximately 0.012, or 1.2 %. So, the total uncertainty of g as a
predictor of the counting efficiency for a source prepared and counted at some time in the future
is

Variations in counting efficiency due to source placement should be reduced as much as possible
through the use of positioning devices that ensure a source with a given geometry is always
placed in the same location relative to the detector. If such devices are not used, variations in
source position may significantly increase the measurement uncertainty.
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Calibrating an instrument under conditions different from the conditions under which test sources
are counted may lead to large uncertainties in the sample activity measurements. Source geome-
try in particular tends to be an important factor for many types of radiation counters. Generally,
calibration sources should be prepared with the sizes and shapes of test sources and counted in
the same positions, although in some cases it may be possible to calculate correction factors
which allow one calibration to be used for different geometries. When correction factors are
used, their uncertainties should be evaluated and propagated.

If the efficiency, g, is calculated from a model that includes one of the quantities Xi appearing
elsewhere in the sample activity model, there is a correlation between the measured values of g
and Xi, which should not be ignored. It is often simpler to include the entire expression for g in
the expression for the laboratory sample activity before applying the uncertainty propagation
formula.

EXAMPLE 19.21  Suppose the counting efficiency for a measurement is modeled by the equa-
tion g = Aexp(!BmS), where A and B are calibration parameters and mS is the source mass; and
suppose the chemical yield Y is modeled by mS / mC, where mC is the expected mass at 100 %
recovery. Then the estimated values of the counting efficiency and the yield are correlated,
because both are calculated from the same measured value of the source mass. When the com-
bined standard uncertainty of the sample activity is calculated, the covariance u(g,Y) may be
included in the uncertainty propagation formula (see Section 19.4.4), or the variables g and Y
in the model may be replaced by the expressions Aexp(!BmS) and mS / mC , respectively,
before the sensitivity coefficients are calculated.

In some cases the estimated value of the counting efficiency has no effect on the output estimate
of laboratory sample activity. This happens often in alpha-particle spectrometry, for example,
when isotopic tracers are used. The efficiency estimate is needed to obtain an estimate of the
yield of the chemistry procedure, but the efficiency usually cancels out of the mathematical
model for the laboratory sample activity and its uncertainty is not propagated when determining
the combined standard uncertainty of the activity estimate.

19.5.7  Radionuclide Half-Life

The component of combined standard uncertainty associated with the half-life of a radionuclide
is often negligible in measurements performed by typical radioanalytical laboratories, since the
half-lives of most radionuclides of interest have been measured very accurately and in many
cases decay times are short relative to the half-life (so that the sensitivity coefficient is small).
However, this uncertainty component is also one of the most easily obtained components, since
radionuclide half-lives and their standard uncertainties are evaluated and published by the
National Nuclear Data Center (NNDC) at Brookhaven National Laboratory. The data may be
obtained from the NNDC web site (www.nndc.bnl.gov).
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19.5.8  Gamma-Ray Spectrometry

Most radiochemistry laboratories rely on commercial software for the analysis of gamma-ray
spectra and for the evaluation and propagation of the associated uncertainties. There are a
number of sources of measurement uncertainty in gamma-ray spectrometry, including:

  � Poisson counting uncertainty;
  � Compton baseline determination;
  � Background peak subtraction;
  � Multiplets and interference corrections;
  � Peak-fitting model errors;
  � Efficiency calibration model error;
  � Summing;
  � Density-correction factors; and
  � Dead time.

See Chapter 16 for further discussion of measurement models and uncertainty analysis for
gamma-ray spectrometry, but note that neither Chapter 16 nor this chapter attempts to describe
all of the relevant issues in detail.

19.5.9  Balances

The uncertainty of a balance measurement tends to be small, even negligible, when the balance is
used properly and the mass being measured is much larger than the balance�s readability. How-
ever, the uncertainty may also be difficult to evaluate unless the balance is well maintained and
operated in a controlled environment that protects it from external influences. In particular, drafts
or sudden changes in pressure, temperature or humidity (e.g., opening doors or dishwashers) may
produce spurious errors.

Even if one assumes the balance measurement uncertainty is negligible, there are reasons for per-
forming at least a partial evaluation of the uncertainty. One reason is to confirm the assumption
that the uncertainty is negligible or to determine the range of measurement conditions under
which the assumption is true. For example the uncertainty may be significant if the mass being
weighed is comparable in magnitude to the readability of the balance, or if the mass is calculated
as the difference between two much larger and nearly equal masses that are determined at differ-
ent times and under possibly different environmental conditions (e.g., a planchet and filter
weighed before and after adding a small amount of precipitate to the filter). Another reason is to
establish acceptance criteria for the strict quality control necessary to ensure that the uncertainty
remains negligible.

The uncertainty of a mass measurement generally has components associated with 
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  � Calibration;
  � Linearity;
  � Repeatability;
  � Day-to-day or hour-to-hour variability due to environmental factors; and
  � Air buoyancy.

Other sources of uncertainty may include leveling errors and off-center errors, which should be
controlled. Static electrical charges may also have an effect. For some materials gain or loss of
mass before or after weighing (e.g., by absorption or evaporation of water) may be significant.
Attachment 19E of this chapter describes balance measurement uncertainties in more detail.

Balance manufacturers provide specifications for repeatability and linearity, which are usually of
the same order of magnitude as the balance�s readability, but tests of repeatability and linearity
should also be included in the routine quality control for the balance.

Repeatability is expressed as a standard deviation, sr, and is typically assumed to be independent
of the load. It represents the variability of the result of zeroing the balance, loading and centering
a mass on the pan, and reading the final balance indication. Attachment 19E describes procedures
for evaluating the repeatability experimentally.

The linearity tolerance of a balance, aL, should be specified by the manufacturer as the maximum
deviation of the balance indication from the value that would be obtained by linear interpolation
between the calibration points. Different methods may be used to convert this tolerance to a
standard uncertainty, depending on the form the linearity error is assumed to take. One method,
which is recommended by the Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical
Measurement, is to treat the tolerance, aL, as the half-width of a rectangular distribution and
divide aL by  to obtain the standard uncertainty (Eurachem, 2000). Another method, suggested3
in Attachment 19E of this chapter, is to treat the linearity error as a sinusoidal function of the
load, with amplitude aL. This model requires that aL be divided by  to obtain the standard2
uncertainty. The latter method is used below.

Procedures for evaluating the relative standard uncertainties due to calibration and environmental
factors and for calculating the buoyancy-correction factor and its standard uncertainty are des-
cribed in Attachment 19E.

When one evaluates the uncertainty of a balance measurement that is performed as part of a
typical radiochemical measurement, where the relative combined standard uncertainty of the final
result is usually 5 % or more, often much more, the evaluation may involve only a few
components of the uncertainty. Important components for this purpose include those due to
repeatability, linearity, and environmental factors. Gains or losses of mass may be important in
some cases, but calibration errors and buoyancy effects usually can be ignored, since they tend to
be significant in the mass measurement only when the total uncertainty of the mass is so small
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m ' Inet ' Igross & Itare (19.28)

u(m) ' 2s 2
r % a 2

L % m 2φ2
env (19.29)

u(m) ' 2s 2
r % a 2

L % I 2
tare % I 2

gross φ
2
env (19.30)

that it is negligible in the overall analytical process. The remainder of this section will consider
only the mass uncertainties due to repeatability, linearity, and environmental factors (but see
Attachment 19E).

A typical mass measurement in the laboratory involves separate measurements of a gross mass
and a tare mass. The net mass, m, is determined by subtracting the balance indication for the tare
mass, Itare, from the indication for the gross mass, Igross. That is,

If the tare and gross measurements are made under the same environmental conditions (e.g., at
nearly the same time), the standard uncertainty of m is given (according to the simplified model)
by

where
m is the net mass;
sr is the repeatability standard deviation;
aL is the linearity tolerance; and
φenv is the relative standard uncertainty due to environmental effects.

In some cases the balance is simply zeroed before adding the mass and there is no tare measure-
ment. (Unfortunately the operation of zeroing the balance is often called �taring.�) In such cases
the factor 2 that appears before s r

2 in Equation 19.29 should be omitted.

If tare and gross measurements are made under possibly different environmental conditions (e.g.,
on different days), then the following expression should be used to account for the greater uncer-
tainty due to environmental effects.

EXAMPLE 19.22  The chemical yield (recovery) for a strontium analysis is determined
gravimetrically by weighing a stainless steel planchet before and after evaporating a strontium
nitrate solution onto it, and then dividing the net mass by the predicted mass of strontium
nitrate at 100 % yield. The balance has readability 0.0001 g. According to the manufacturer it
has repeatability 0.00010 g and linearity 0.00020 g, and these values have been reasonably well
confirmed by historical QC data. The analyst has also used balance QC data to determine that
the relative standard uncertainty due to environmental effects is approximately 2 × 10!5 (see
Attachment 19E). Suppose for a particular measurement the tare mass of the planchet is
8.5923 g and the gross mass, which is measured two hours later, is 8.5978 g. Then the net mass
is
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m ' 8.5978 g & 8.5923 g ' 0.0055 g

Since two hours elapse between the tare and gross measurements, Equation 19.30 is used to
calculate the standard uncertainty.

u(m) ' 2s 2
r % a 2

L % I 2
tare % I 2

gross φ
2
env

' 2(0.00010 g)2 % (0.00020 g)2 % (8.5923 g)2 % (8.5978 g)2 (2 × 10&5)2

' 0.00035 g

Thus the relative standard uncertainty is approximately 6 %, which is significant in the determi-
nation of a yield factor.

Note that using the linearity tolerance, 0.00020 g, is rather conservative when the difference
between the gross and tare masses is so small, but the uncertainty component due to linearity is
not dominant in this example. It is actually smaller than the uncertainty due to environmental
effects.

EXAMPLE 19.23  An aliquant of dry soil is subsampled for analysis and weighed on the same
laboratory balance described in the preceding example. The repeatability of the balance is
0.00010 g, the linearity is 0.00020 g, and the relative standard uncertainty due to environ-
mental effects is 2 × 10!5. Suppose the analyst zeros the balance with an empty container on
the pan, adds the aliquant of soil to the container, and reads the final balance indication with-
out a significant time delay. If the final indication is 1.0247 g, then the mass estimate is m =
1.0247 g and its standard uncertainty is

u(m) ' s 2
r % a 2

L % m 2φ2
Env

' (0.00010 g)2 % (0.00020 g)2 % (1.0247 g)2(2 × 10&5)2

' 0.00022 g

So, the relative standard uncertainty is approximately 0.022 %, which is likely to be negligible
in comparison to the uncertainty of subsampling (heterogeneity).

Note that in this example the uncertainty due to environmental effects is the smallest of the
three uncertainty components.
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u(V) ' s 2 %
δ2

cap

6
(19.31)

19.5.10  Pipets and Other Volumetric Apparatus

Generally, a pipet or volumetric flask is used not to measure an existing volume of liquid, but to
obtain a volume of a predetermined nominal size. The nominal value is treated as if it were a
measured value, although it is known before the �measurement.� The true volume is the variable
quantity. Since a volumetric �measurement� of this type cannot be repeated, pipets and flasks are
good examples of measurement systems for which historical data are important for Type A eval-
uations of standard uncertainty.

The uncertainty of a pipet measurement, like that of a balance measurement, is often relatively
small in comparison to other uncertainties in a radiochemical analysis. However, the use of the
wrong type of pipetting device for a particular measurement may result in a relatively large
pipetting uncertainty. For example, one manufacturer�s technical specifications for various
models of pipetting devices list precision values that range from 0.1 % to 5 % and bias tolerances
that range from 0.3 % to 12 %. (Here a �bias tolerance� means an upper bound for the possible
magnitude of the pipet�s unknown systematic error.) So, it is important for the user of a particular
model to know its performance characteristics.

The total uncertainty of a volumetric measurement may include several components, but since
most of the components are negligible in a typical radiochemical measurement process, a very
simple method of evaluation is usually adequate as long as quality control is strict enough to
ensure that the measuring devices and personnel are performing as expected. The method sug-
gested here considers only two components, which are associated with precision and the capacity
(or bias) of the device. Attachment 19E presents more complete methods of evaluation.

Any volumetric measuring device should have a specified tolerance for its capacity, or for the
possible bias of the device (e.g., ASTM E288 and ASTM E969). This tolerance, δcap, may be
assumed to represent the half-width of a rectangular or triangular distribution. Assuming a tri-
angular distribution, as recommended by the Eurachem/CITAC Guide, one evaluates the
uncertainty component of the volume associated with the capacity as  (Eurachem, 2000).δcap / 6

The simplest type of uncertainty evaluation is possible when the manufacturer of a pipetting
device provides specifications for both bias and precision (e.g., Eppendorf® pipettes). In this case
the Type B standard uncertainty of a pipetted volume, V, may be evaluated as

where δcap is the manufacturer�s stated bias tolerance and s is the stated standard deviation.
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u(V) '
δ2

cap % (πδmen d 2 / 4)2

6
(19.32)

EXAMPLE 19.24  Suppose the manufacturer of a 5-milliliter pipetting device specifies the
relative bias tolerance to be 0.6 % and the relative precision to be 0.2 %. Then the standard
uncertainty of the volume may be evaluated as

u(V) ' s 2 %
δ2

cap

6
' (5 mL × 0.002)2 %

(5 mL × 0.006)2

6
' 0.0158 mL

The relative standard uncertainty in this case is only about 0.3 %, which might be considered
negligible for many applications.

EXAMPLE 19.25  Suppose the relative bias tolerance for an adjustable-volume pipetting device
is 2.5 % when the device is set at 10 µL, and the relative precision is 0.7 %. Then the standard
uncertainty of a volume delivered at the 10-microliter setting may be evaluated as

u(V) ' s 2 %
δ2

cap

6
' (10 µL × 0.007)2 %

(10 µL × 0.025)2

6
' 0.124 µL

The relative standard uncertainty in this case is about 1.2 %, which would be considered
potentially significant for many types of measurements.

When volumetric glassware is used, or when the manufacturer does not specify the precision, the
uncertainty due to imprecision must be determined by other means. One Type B method of eval-
uating the imprecision for volumetric glassware is to examine the dimensions of the glassware
and use experience and professional judgment to estimate the maximum possible deviation of the
meniscus from the capacity line. If δmen denotes this maximum deviation and d denotes the
internal diameter of the glassware at the capacity mark, the maximum deviation of the volume
from its value at the capacity mark is given by . Note that if δmen and d are expressedπδmen d 2 / 4
in centimeters, this expression gives a value in milliliters. Then, if δmen is assumed to be the half-
width of a triangular distribution, the standard uncertainty of V is given by the following equation

A Type A (experimental) method of evaluation may also be used (see Attachment 19E).



Measurement Uncertainty

19-54MARLAP JULY 2004

EXAMPLE 19.26  Suppose the inside diameter of an ASTM Class-A 1-milliliter volumetric
pipet is 0.4 cm, and the analyst estimates δmen, the maximum deviation from the capacity line,
to be 0.075 cm. The capacity tolerance, δcap, is specified by ASTM E969 to be 0.006 mL. So,
the standard uncertainty of the volume (V = 1 mL) is

u(V) '
δ2

cap % (πδmen d 2 / 4)2

6

'
(0.006 mL)2 % π (0.075 cm)(0.4 cm)2 / 4 2

6
' 0.00456 mL

The relative standard uncertainty is approximately 0.5 %.

19.5.11  Digital Displays and Rounding

If a measuring device, such as an analytical balance, has a digital display with resolution δ, the
standard uncertainty of a measured value is at least δ / . This uncertainty component exists2 3
even if the instrument is completely stable. 

A similar Type B method may be used to evaluate the standard uncertainty due to computer
roundoff error. When a value x is rounded to the nearest multiple of 10n, the component of uncer-
tainty generated by roundoff error is 10n / . When rounding is performed properly and x is2 3
printed with an adequate number of figures, this component of uncertainty should be negligible
in comparison to the total uncertainty of x.

EXAMPLE 19.27  The readability of a digital balance is 0.1 g. Therefore, the minimum stan-
dard uncertainty of a measured mass is 0.1 /  = 0.029 g.2 3

EXAMPLE 19.28  A computer printout shows the result x of a measurement as 

3.40E+01 +� 9.2E�02

where the expanded uncertainty is calculated using a coverage factor of 2. Since the coverage
factor is 2, the printout implies the standard uncertainty is 0.092 / 2, or 0.046. However, since
the measured value is rounded to the nearest multiple of 0.1, the standard uncertainty of x
should be increased from 0.046 to
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u(FS) ' 1
mS

&
1

mL

kd 3 (19.33)

.u(x) ' 0.0462 %
0.1
2 3

2
' 0.054

19.5.12  Subsampling

Appendix F of this manual discusses laboratory subsampling. The subsampling of heterogeneous
materials for laboratory analysis increases the variability of the measurement result and thus adds
a component of measurement uncertainty, which is usually difficult to quantify without replicate
measurements. Appendix F summarizes important aspects of the statistical theory of particulate
sampling and applies the theory to subsampling in the radiation laboratory (see also Gy, 1992,
and Pitard, 1993). The mathematical estimates obtained using the theory often require unproven
assumptions about the material analyzed and rough estimates of unmeasurable parameters. How-
ever, in some cases the theory can be used to suggest how subsampling errors may be affected by
either changing the subsample size or grinding the material before subsampling. Of course the
total measurement uncertainty, including components contributed by subsampling, may always
be evaluated by repeated subsampling and analysis.

If subsampling is not repeated, its effects may be represented in the mathematical measurement
model by including an input quantity FS whose value is the ratio of the analyte concentration of
the subsample to that of the total sample. This ratio, which will be called the subsampling factor
(a MARLAP term), appears in the model as a divisor of the net instrument signal and thus is sim-
ilar to the chemical yield, counting efficiency and other sensitivity factors. The value of FS is
estimated as 1, but the value has a standard uncertainty, u(FS), which increases the combined
standard uncertainty of the result. 

Although the component of uncertainty caused by the subsampling of heterogeneous solid matter
may be difficult to estimate, it should not be ignored, since it may be relatively large and in some
cases may even dominate all other components. One may use previous experience with similar
materials to evaluate the uncertainty, possibly with the aid of the information and methods pre-
sented in Appendix F. Appendix F shows how the value of the subsampling uncertainty depends
on the maximum particle diameter, d, the mass of the sample, mL, and the mass of the subsample,
mS. The equation for the standard uncertainty of FS typically has the form

where the value of k depends on the sample. By default, if �hot particles� are not suspected, and
if reasonable precautions are taken either to homogenize (mix) the material or to build the sub-
sample from a large number of randomly selected increments, one may assume k . 0.4 g/cm3, or
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0.0004 g/mm3. If hot particles are suspected, special measurement techniques are probably
required, as described in Appendix F. In this case Equation 19.33 should not be used.

EXAMPLE 19.29

Problem: A 609-gram soil sample is ground until it passes through an ASTM #10 sieve,
which has a mesh size of 2.0 mm. The sample is then homogenized and a 0.7957-gram sub-
sample is removed. Use Equation 19.33 with k = 0.0004 g/mm3 to evaluate the standard
uncertainty of the subsampling factor, u(FS). Repeat the evaluation assuming an ASTM #18
sieve, whose mesh size is 1.0 mm.

Solution: First, assume d = 2.0 mm. Then the subsampling uncertainty is

u(FS) ' 1
0.7957 g

&
1

609 g
(0.0004 g/mm3)(2.0 mm)3 ' 0.063

Now assume d = 1.0 mm. Then

u(FS) ' 1
0.7957 g

&
1

609 g
(0.0004 g/mm3)(1.0 mm)3 ' 0.022

Another alternative is to evaluate the subsampling variance for each type of material and analyte
at a specified maximum particle size, d, and subsample mass, mS. Such an evaluation can be per-
formed experimentally by repeated subsampling and analysis of one or more actual samples, pro-
vided that the concentrations are high enough and the measurement precision good enough to
allow estimation of the variance attributable to subsampling. However, an artificially spiked
sample is usually inappropriate for this purpose, because its heterogeneity differs from that of
real samples. If the precision of the measurement process after subsampling is inadequate, the
subsampling variance may be hard to quantify experimentally.

19.5.13  The Standard Uncertainty for a Hypothetical Measurement

MARLAP�s recommended method selection criteria in Chapter 3 require that a laboratory esti-
mate the standard uncertainty for a measurement of the activity concentration of a radionuclide in
a hypothetical laboratory sample whose true concentration is specified (i.e., the �method uncer-
tainty,� as defined by MARLAP). To estimate the combined standard uncertainty of the meas-
ured concentration, one must obtain estimates for all the input quantities and their standard
uncertainties. All quantities except the gross instrument signal may be measured and the standard
uncertainties evaluated by routine Type A and Type B methods. Alternatively, the values and
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their standard uncertainties may be determined from historical data. The estimate of the gross
signal and its standard uncertainty must be obtained by other means, since the laboratory sample
is only hypothetical. The predicted value of the gross count NS is calculated by rearranging the
equation or equations in the model and solving for NS. The standard uncertainty of the measured
value may then be evaluated either from theory (e.g., Poisson counting statistics), historical data,
or experimentation.

EXAMPLE 19.30  Suppose the mathematical model for a radioactivity measurement is

a '
NS / tS & NB / tB

mS Yg e&λ (tD% tS /2) FS

where
a is the specific activity of the radionuclide in the sample;
NS is the test source count;
NB is the blank count;
tS is the source count time;
tB is the blank count time;
tD is the decay time;
mS is the mass of the test portion;
Y is the chemical yield;
g is the counting efficiency;
λ is the decay constant; and
FS is the subsampling factor.

With values given for the specific activity a; test portion mass mS; blank count NB; count times
tS, tB, and tD; efficiency g ; and yield Y; the source count NS can be predicted. The predicted
value is NS = tS (amSYg exp(!λ(tD + tS / 2) ) + NB / tB). When this value is treated like a meas-
ured value, its estimated variance according to Poisson statistics is u2(NS) = NS. So, assuming
negligible uncertainties in the times tS, tB, and tD, the (first-order) uncertainty propagation for-
mula gives the combined variance of the output estimate, a, as

u 2
c (a) '

u 2(NS) / t 2
S % u 2(NB) / t 2

B

m 2
S Y 2g 2 e�2λ (tD% tS /2)

% a 2 u 2(mS)

m 2
S

%
u 2(Y)

Y 2
%

u 2(g )
g 2

%
u 2(FS)

F 2
S

'
amS Yg e�λ (tD% tS /2)

% NB / tB / tS % NB / t 2
B

m 2
S Y 2g 2 e�2λ (tD% tS /2)

% a 2 u 2(mS)

m 2
S

%
u 2(Y)

Y 2
%

u 2(g )
g 2

%
u 2(FS)

F 2
S
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ATTACHMENT 19A
Statistical Concepts and Terms

19A.1  Basic Concepts

Every laboratory measurement involves a measurement error. Methods for analyzing measure-
ment error are generally based on the theory of random variables. A random variable may be
thought of as the numerical outcome of an experiment, such as a laboratory measurement, which
produces varying results when repeated. In this document a random variable is most often the
result of a measurement. Random variables will usually be denoted in this attachment by upper-
case letters.

Of primary importance in almost any discussion of a random variable is its distribution, or prob-
ability distribution. The distribution of a random variable X describes the possible values of X
and their probabilities. Although the word �distribution� has a precise meaning in probability
theory, the term will be used loosely in this document. This attachment describes several types of
distributions, including the following:

� normal (Gaussian)
� log-normal (or lognormal)
� chi-squared (or chi-square)
� Student�s t
� rectangular (uniform)
� trapezoidal
� exponential
� binomial
� Poisson

Normal distributions are particularly important because they appear often in measurement proc-
esses. The other types listed are also important in this chapter, but only the exponential, binomial
and Poisson distributions are described in the text.

The distribution of X is uniquely determined by its distribution function, defined by F(x) =
Pr[X # x], where Pr[X # x] denotes the probability that X is less than or equal to x. The distribu-
tion function is also called the cumulative distribution function (cdf). If there is a function f(x)
such that the probability of any event a # X # b is equal to Ia

b f(x) dx (i.e., the area under the curve
y = f(x) between x = a and x = b), then X is a continuous random variable and f(x) is a probability
density function (pdf) for X. When X is continuous, the pdf uniquely describes its distribution. A
plot of the pdf is the most often used graphical illustration of the distribution (e.g., see Figures
19.3 and 19.4), because the height of the graph over a point x indicates the probability that the
value of X will be near x.
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σ

FIGURE 19.3 � A symmetric distribution

Two useful numerical characteristics of the distribution of a random variable are its mean and
variance. The mean is also called the expectation or the expected value and may be denoted by
µX or E(X). The mean of a distribution is conceptually similar to the center of mass of a physical
object. It is essentially a weighted average of all the possible values of X, where the weight of a
value is determined by its probability. The variance of X, denoted by σX

2, Var(X), or V(X), is a
measure of the variability of X, or the dispersion of its values, and is defined as the expected
value of (X ! µX)2.

The standard deviation of X, denoted by σX is defined as the positive square root of the variance.
Although the variance appears often in statistical formulas, the standard deviation is a more intui-
tive measure of dispersion. If X represents a physical quantity, then σX has the same physical
dimension as X. The variance σX

2, on the other hand, has the dimension of X squared.

Any numerical characteristic of a distribution, such as the mean or standard deviation, may also
be thought of as a characteristic of the random variables having that distribution.

The mean and standard deviation of a distribution may be estimated from a random sample of
observations of the distribution. The estimates calculated from observed values are sometimes
called the sample mean and sample standard deviation. Since the word �sample� here denotes a
statistical sample of observations, not a physical sample in the laboratory, metrologists often use
the terms arithmetic mean, or average, and experimental standard deviation to avoid confusion.

The mean is only one measure of the center of a distribution (�measure of central tendency�).
Another is the median. The median of X is a value x0.5 that splits the range of X into upper and
lower portions which are equally likely, or, more correctly, a value x0.5 such that the probability
that X # x0.5 and the probability that X $ x0.5 are both at least 0.5. Note that for some distributions
the median may not be unique. Figure 19.4 shows the probability density function of a symmetric
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FIGURE 19.4 � An asymmetric distribution

distribution, whose mean and median coincide, and Figure 19.4 shows the pdf of an asymmetric
distribution, whose mean and median are distinct.

The median of X is also called a quantile of order 0.5, or a 0.5-quantile. In general, if p is a num-
ber between 0 and 1, a p-quantile of X is a number xp such that the probability that X < xp is at
most p and the probability that X # xp is at least p. A p-quantile is often called a 100pth percentile.

Sometimes the standard deviation of a nonnegative quantity is more meaningful when expressed
as a fraction of the mean. The coefficient of variation, or CV, is defined for this reason as the
standard deviation divided by the mean. The coefficient of variation is a dimensionless number,
which may be converted to a percentage. The term �relative standard deviation,� or RSD, is also
used. The term �relative variance� is sometimes used to mean the square of the relative standard
deviation.

The results of two analytical measurements may be correlated when they have measurement
errors in common. This happens, for example, if laboratory samples are analyzed using the same
instrument without repeating the instrument calibration. Any error in the calibration parameters
affects all results obtained from the instrument. This type of association between two quantities X
and Y is measured by their covariance, which is denoted by σX,Y or Cov(X,Y). The covariance of X
and Y is defined as the expected value of the product (X ! µX)(Y ! µY).

Covariance, like variance, is somewhat nonintuitive because of its physical dimension. Further-
more, a large value for the covariance of two variables X and Y does not necessarily indicate a
strong correlation between them. A measure of correlation must take into account not only the
covariance σX,Y, but also the standard deviations σX and σY. The correlation coefficient, denoted
by ρX,Y, is therefore defined as σX,Y divided by the product of σX and σY. It is a dimensionless num-
ber between !1 and +1. The quantities X and Y are said to be strongly correlated when the abso-
lute value of their correlation coefficient is close to 1.
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Statistical formulas are generally simpler when expressed in terms of variances and covariances,
but the results of statistical analyses of data are more easily understood when presented in terms
of standard deviations and correlation coefficients.

The lack of a correlation between two quantities X and Y is not a sufficient condition to guarantee
that two values f(X) and g(Y) calculated from them will also be uncorrelated. A stronger condi-
tion called independence is required. For most practical purposes, to say that two quantities are
�independent� is to say that their random components are completely unrelated. A more rigorous
definition appears in the MARLAP glossary.

When the value of a random variable X is used to estimate the value of an unknown parameter θ,
then X is called an estimator for θ. The bias of X is the difference between the mean µX and the
actual value θ. If the bias is zero, then X is said to be unbiased; otherwise, X is biased. Note that
metrologists use the term �bias� with a somewhat different but similar meaning (see Section
19.3.1).

As mentioned in Section 19.4.5.2, even if X is an unbiased estimator for θ, the application of a
nonlinear function, f, to X may produce a biased estimator, f(X), for the value of f(θ). Colloquially
speaking, the function of the mean is different from the mean of the function. For example, if X
is an unbiased estimator for θ, then generally X2 is a biased estimator for θ2.

If the value of X is used not to estimate the value of a parameter but to �predict� the value of
another random variable, Y, whose value oftentimes is not directly observed, then X is called a
predictor for Y.

19A.2  Probability Distributions

This section briefly describes the probability distributions used in Chapter 19.

Distributions may be classified according to their mathematical properties. Distributions in the
same class or family are described by the same mathematical formulas. The formulas involve
numerical parameters which distinguish one member of the class from another.

Two important kinds of distributions are the normal and log-normal, which are observed often in
nature. Other types of distributions important in radioanalysis include the rectangular, binomial,
Poisson, Student�s t, chi-squared and exponential distributions. Poisson distributions in particular
are important in radiation counting measurements and are described in Section 19.5.2.
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FIGURE 19.5 � A normal distribution

19A.2.1  Normal Distributions

Many quantities encountered in nature and in the laboratory have distributions which can be de-
scribed by the �bell curve.� This type of distribution, called a normal, or Gaussian, distribution,
is usually a reasonably good model for the result of a radioanalytical measurement. A number of
commonly used methods for evaluating data sets depend on their having an approximately nor-
mal distribution. The probability density function (pdf) for a normal distribution is shown in Fig-
ure 19.5.

A normal distribution is uniquely specified by its mean µ and variance σ2. The normal distribu-
tion with mean 0 and variance 1 is called the standard normal distribution. If X is normally dis-
tributed with mean µ and variance σ2, then (X ! µ) / σ has the standard normal distribution.

The sum of a large number of independent random variables has an approximately normal distri-
bution, even if the individual variables themselves are not normally distributed, so long as the
variance of each term is much smaller than the variance of the sum.17 This is one reason why the
normal distribution occurs often in nature. When a quantity is the result of additive processes
involving many small random variations, the quantity tends to be normally distributed. It is also
true that many other distributions, such as the binomial, Poisson, Student�s t and chi-squared, can
be approximated by normal distributions under certain conditions.

The mean value of a normal distribution is also its median, or the value that splits the range into
equally likely portions.
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FIGURE 19.6 � A log-normal distribution

The value of a normally distributed quantity will be within one standard deviation of the mean
about 68 % of the time. It will be within two standard deviations about 95 % of the time and
within three standard deviations more than 99 % of the time. It is important to remember that
these percentages apply only to normal distributions.

19A.2.2  Log-normal Distributions

The concentration of a contaminant in the environment may not be normally distributed. Instead
it often tends to be log-normally distributed, as shown in Figure 19.6.

By definition, a quantity X has a log-normal (or lognormal) distribution if the logarithm of X is
normally distributed. The product of a large number of independent positive random variables
with similar variances is approximately log-normal, because the logarithm of the product is a
sum of independent random variables, and the sum is approximately normal. The concentration
of a contaminant in the environment tends to be log-normal because it is the result of processes
of concentration and dilution, which are multiplicative.

The distribution of a log-normal quantity X can be uniquely specified by the mean µln X and vari-
ance  of ln X, but more commonly used parameters are the geometric mean µg = exp(µln X)σ2

lnX
and the geometric standard deviation σg = exp(σln X). The geometric mean and geometric standard
deviation are defined so that, if k is a positive number, the probability that X will fall between
µg / σg

k and µgσg
k is the same as the probability that lnX, which is normally distributed, will fall

between µln X ! kσln X and µln X + kσln X. For example, the value of X will be between µg / σg
2 and

µgσg
2 about 95 % of the time.

Although the mean and median of a normal distribution are identical, for a log-normal distribu-
tion these values are distinct. The median, in fact, is the same as the geometric mean µg. As
shown in Figure 19.6, the mean µ is larger than the geometric mean µg . The mean may be cal-
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19 Note that the symbols µ and σ are often used to denote the mean and standard deviation of ln X, which is normally
distributed, rather than those of X, which is log-normally distributed.
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FIGURE 19.7 � Chi-squared distributions

culated from the geometric mean and geometric standard deviation as shown in Table G.6 in
Appendix G.18,19

The log-normal distribution is important for the interpretation of environmental radiation data,
but it may also have applications in the laboratory. Two possible applications are decay factors
e!λt based on uncertain time measurements and concentrations of contaminants in laboratory
reagents.

19A.2.3  Chi-squared Distributions

If Z1, Z2, �, Zν are independent random variables and each has the standard normal distribution,
the sum Z1

2 + Z2
2 + """ + Zν2 has a chi-squared (or chi-square) distribution with ν degrees of free-

dom. A chi-squared distribution, like a log-normal distribution, is asymmetric and does not in-
clude negative values. For large ν, the chi-squared distribution is approximately normal. Figure
19.7 shows the densities for chi-square distributions with 1, 2, 3 and 10 degrees of freedom.

Chi-squared distributions are used frequently in hypothesis testing, especially for tests of hypoth-
eses about the variances of normally distributed data. Chi-squared distributions also appear in
least-squares analysis (see Attachment 19C).
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X � µ
sX / n

Normal
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FIGURE 19.8 � The t-distribution with 3 degrees of freedom

A sum of independent chi-squared random variables is also chi-squared. Specifically, if X and Y
are independent chi-squared random variables with ν1 and ν2 degrees of freedom, respectively,
then X + Y has a chi-squared distribution with ν1 + ν2 degrees of freedom.

The mean of a chi-squared distribution equals the number of degrees of freedom ν, and the vari-
ance equals 2ν. The median does not have a simple formula.

19A.2.4  T-Distributions

If Z is standard normal, X is chi-squared with ν degrees of freedom, and Z and X are independent,
then  has a Student�s t-distribution with ν degrees of freedom. A t-distribution is sym-Z / X / ν
metric and mound-shaped like a normal distribution and includes both positive and negative val-
ues. Figure 19.8 shows the pdf for a t-distribution with 3 degrees of freedom. A dotted standard
normal curve is also shown for comparison.

When ν is large, the t-distribution is virtually identical to the standard normal distribution.

The median of a t-distribution is zero. The mean is also zero if ν > 1 but is undefined for ν = 1.
The variance equals ν / (ν ! 2) if ν > 2 and is undefined otherwise.

T-distributions are often used in tests of hypotheses about the means of normally distributed data
and are important in statistical quality control. T-distributions are also used in the procedure de-
scribed in Attachment 19D for calculating measurement coverage factors.

If X1, X2, �, Xn are independent and normally distributed with the same mean µ and the same
variance, then the quantity
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Y � X
sX 1 % 1/n

where  is the arithmetic mean and sX is the experimental standard deviation, has a t-distributionX
with n ! 1 degrees of freedom.

If X1, X2, �, Xn, Y are independent and normally distributed with the same mean and variance,
then the quantity

where  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-X
distribution with n ! 1 degrees of freedom.

If Z is standard normal, X is chi-squared with ν degrees of freedom, Z and X are independent, and
δ is a constant, then  has the noncentral t-distribution with ν degrees of freedom(Z % δ) / X / ν
and noncentrality parameter δ (Stapleton, 1995). When the (central) t-distribution is used to test
the null hypothesis that two normal distributions have the same mean, a noncentral t-distribution
describes the distribution of the test statistic if the null hypothesis is false. For example, if X1,
X2, �, Xn, Y are independent and normally distributed with the same variance σ2, and X1, X2, �,
Xn have the same mean µX, then the statistic

Y & X
sX 1 % 1/n

where  is the arithmetic mean of the Xi and sX is the experimental standard deviation, has a t-X
distribution with n ! 1 degrees of freedom if µX = µY, but it has a noncentral t-distribution with
noncentrality parameter

δ ��
µ Y � µX

σ 1 % 1 / n
if µX … µY.

The noncentral t-distribution is useful in the theory of detection limits and appears in Attachment
20A of Chapter 20, �Detection and Quantification Capabilities.�

19A.2.5  Rectangular Distributions

If X only assumes values between a� and a+ and all such values are equally likely, the distribution
of X is called a rectangular distribution, or a uniform distribution (see Figure 19.9).

The mean and median of the rectangular distribution equal the midrange (a� + a+) / 2, and the
standard deviation is (a+ ! a�) / . 2 3
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FIGURE 19.9 � A rectangular distribution
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FIGURE 19.10 � A trapezoidal distribution

Rectangular distributions are frequently used for Type B evaluations of standard uncertainty (see
Sections 19.4.2.2 and 19.5.11).

19A.2.6  Trapezoidal and Triangular Distributions

Another type of bounded distribution used for Type B evaluations of standard uncertainty is a
trapezoidal distribution, which is described in Section 19.4.2.2. If X has a trapezoidal distribu-
tion, it only assumes values between two numbers a� and a+, but values near the midrange
(a� + a+) / 2 are more likely than those near the extremes. The pdf for a symmetric trapezoidal
distribution is shown in Figure 19.10. Asymmetric trapezoidal distributions are not considered
here.

The mean and median of this distribution are both equal to the midrange. If the width of the trap-
ezoid at its base is 2a and the width at the top is 2aβ, where 0 < β < 1, then the standard deviation
is . As β approaches 0, the trapezoidal distribution approaches a triangular distri-a (1 % β2) / 6
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FIGURE 19.11 � An exponential distribution

bution, whose standard deviation is , or (a+ ! a�) / . As β approaches 1, the distributiona / 6 2 6
approaches the rectangular distribution described in Section 19A.2.5.

19A.2.7  Exponential Distributions

The exponential distribution describes the life of an unstable atomic nucleus, whose remaining
life does not depend on its current age. The distribution is described by one parameter, often
denoted by λ, which represents the fractional decay rate. The mean of the distribution is 1 / λ and
its variance is 1 / λ2. The median is the same as the half-life of the radionuclide. The pdf for an
exponential distribution is shown in Figure 19.11.

The exponential distribution also describes waiting times between events in a Poisson process.
For example, if the instrument background for a radiation counter follows the Poisson model
with mean count rate rB (see Section 19A.2.9), the waiting times between counts are
exponentially distributed with parameter rB.

19A.2.8  Binomial Distributions

The binomial distribution, introduced in Section 19.5.2, arises when one counts the outcomes of
a series of n independent and identical experiments, each of which can produce the result �suc-
cess� or �failure.� If the probability of success for each event is p, the number of successes has a
binomial distribution with parameters n and p. Important facts about the binomial distribution
include the following:

  � The distribution is discrete; its only possible values are 0, 1, 2, �, n.
  � The mean of the distribution is np.
  � The variance is np(1 ! p).
  � If n is large and p is not close to 0 or 1, the distribution is approximated well by a normal

distribution.
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Pr[X �� k] �� n
k

p k(1 � p)n�k (19.36)

Pr[X ' n] ' µ ne&µ

n!
(19.37)

Pr[X # n] ' Pr[χ2(2n % 2) $ 2µ] and Pr[X $ n] ' Pr[χ2(2n) # 2µ] (19.38)

χ2
p(ν) . ν 1 &

2
9ν

% zp
2

9ν

3

(19.39)

If X is binomial with parameters n and p, then for k = 0, 1, 2, �, n, the probability that X = k is
given by the equation

where  denotes a binomial coefficient, which equals .n
k

n!
k!(n&k)!

19A.2.9  Poisson Distributions

As explained in Section 19.5.2, the Poisson distribution arises naturally as an approximation to
the binomial distribution when n is large and p is small. Even if n is not large, the variance of the
binomial distribution can be approximated using the Poisson model if p is small. Other important
facts about a Poisson distribution include the following:

� The distribution is discrete; its only possible values are the nonnegative integers
0, 1, 2, �.

� The mean and variance of the distribution are equal.
� If the mean is large, the distribution is well approximated by a normal distribution.
� A sum of independent Poisson random variables is also Poisson.

If X has a Poisson distribution with mean µ, then for any nonnegative integer n, the probability
that X = n is given by

The Poisson distribution is related to the chi-squared distribution, since

where χ2(ν) denotes a chi-squared random variable with ν degrees of freedom. This fact allows
one to use quantiles of a chi-squared distribution to construct a confidence interval for µ based
on a single observation X = n (Stapleton, 1995). Table 19.3 lists 95 % two-sided confidence
intervals for µ some small values of n. For large values of n, the quantiles (2n) and (2n + 2)χ2

p χ2
p

may be approximated using the Wilson-Hilferty formula (NBS, 1964):
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Pr[X # n] . Φ n % 0.5 & µ
µ

(19.40)

0 1 2 3 4 5 6 7 8 9 10 11 12

Poisson: Bars
Normal: Dotted line

µ = 3

n

FIGURE 19.12a � Poisson distribution vs. normal distribution, µ = 3

As noted above, when the mean µ is large, the Poisson distribution may be approximated by a
normal distribution. Specifically,

where Φ denotes the distribution function of the standard normal distribution. For most purposes,
this approximation is adequate if µ $ 20.

Figures 19.12a and b show how the normal approximation improves as µ increases from 3 to
100. For any n, the probability Pr[X # n] is represented by the total area of bars 0 to n, while the
value given by the normal approximation is represented by the total area under the dotted curve
to the left of the vertical line at n + 0.5.

n µlower = (2n) µupper = (2n + 2)1
2
χ2

0.025
1
2
χ2

0.975

0 0.000 3.689
1 0.025 5.572
2 0.242 7.225
3 0.619 8.767
4 1.090 10.242
5 1.623 11.668

TABLE 19.3 � 95 % confidence interval for a Poisson mean
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FIGURE 19.12b � Poisson distribution vs. normal distribution, µ = 100
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ATTACHMENT 19B
Example Calculations

19B.1  Overview

The following example shows how to calculate the combined standard uncertainty for a typical
radioanalytical measurement.

19B.2  Sample Collection and Analysis

A soil sample is analyzed for 239/240Pu and 238Pu by alpha-particle spectrometry.

  � The sample is collected on July 10, 1999, at 11:17 am EDT, and shipped to a laboratory for
analysis.

  � The entire laboratory sample is dried, weighed and ground to a maximum particle size of
1.0 mm. The dry weight is approximately 2 kg.

  � The prepared sample is homogenized, and a test portion is removed by increments. The
documented procedure requires a test portion of approximately 0.5 g.

  � The test portion is weighed and the mass is found to be 0.5017 g. The standard uncertainty of
the mass includes contributions from repeatability, linearity, and sensitivity drift.

  � A 1-milliliter aliquant of 242Pu tracer is added to the test portion. The activity concentration of
the tracer solution has previously been measured as 0.0705 Bq/mL with a standard uncer-
tainty of 0.0020 Bq/mL on June 30, 1999, at 11:00 am CDT. The aliquant is dispensed by a
pipet, whose dispensed volume has a combined standard uncertainty previously determined to
be 0.0057 mL.

  � After fusion, dissolution, chemical purification, and coprecipitation, a test source on a
stainless steel planchet is prepared for counting in an alpha-particle spectrometer.

  � The efficiency of the spectrometer for the chosen geometry, which is assumed to be
independent of the particle energy, has previously been measured as 0.2805 with a standard
uncertainty of 0.0045.

  � A blank source is counted in the spectrometer for 60,000 s. The blank consists of a filter
mounted on a planchet in the same geometry as the test source. In the 242Pu region of interest,
2 counts are measured; and in the 238Pu region of interest, 0 counts are measured. Historical
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data for this and similar spectrometers at the laboratory indicate that the background is stable
between measurements.

  � The test source is placed in the spectrometer and counted for 60,000 s, beginning on August
24, 1999, at 4:47 pm CDT. In the 242Pu region of interest, 967 counts are measured; and in the
238Pu region of interest, 75 counts are measured. 

  � It is assumed that there is no detectable plutonium in the reagents; however, a method blank
is analyzed simultaneously using a different spectrometer to check for contamination of
reagents and glassware.

In this example the measurand will be the specific activity of 238Pu in the 2-kilogram sample (dry
weight) at the time of collection.

19B.3  The Measurement Model

The following notation will be used:

mS is the mass of the test portion (0.5017 g)
mL is the mass of the entire laboratory sample (~2000 g)
d is the mesh size of the sieve (1.0 mm)
cT is the tracer activity concentration (0.0705 Bq/mL)
VT is the tracer aliquant volume (1 mL)
tB is the blank count time (60,000 s)
tS is the count time for the test source (60,000 s)
NS is the total count in a region of interest when the source is counted (238Pu or 242Pu)
NB is the count in a region of interest when the blank is counted (238Pu or 242Pu)
R is the fraction of alpha particles with measured energy in the region of interest (238Pu

or 242Pu)
D is the decay-correction factor (238Pu or 242Pu)
g is the alpha-particle counting efficiency
Y is the plutonium chemical yield fraction
FS is the subsampling factor (estimated as 1.00)
a238 is the specific activity of 238Pu in the dried laboratory sample, decay-corrected to the

time of collection

Subscripts will be used to distinguish between quantities associated with particular regions of
interest (238Pu or 242Pu).

The decay-correction factor for either isotope is calculated as follows:
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D ' e&λ tD 1 & e&λ tS

λ tS

where λ is the decay constant (s!1) and tD is the time between collection and the start of the count-
ing measurement (3,911,400 s). Since λtS is small for both isotopes in this example, D may be
approximated accurately by

D ' e&λ (tD% tS /2)

The half-lives of 238Pu and 242Pu are 87.75 a and 375,800 a, respectively. So,

D238 ' exp &ln2
(87.75 a)×(365.2422 d/a)×(86,400 s /d)

3,911,400 s % 60,000 s
2

' 0.9990

and .D242 ' 1.000

Dead time is negligible in this example; so, no distinction is made between the real time and the
live time. If the real time were greater than the live time, the correction for decay during the
counting period would be based on the real time.

The fraction of alpha particles of each isotope actually measured in the nominal region of interest
is estimated to lie between 0.96 and 1.00. A rectangular distribution is assumed, with center at
0.98 and half-width equal to 0.02. Then the Type B standard uncertainties of R238 and R242 are

u(R238) ' u(R242) '
0.02

3
' 0.01155

The chemical yield of plutonium is calculated using the model

Y '
NS,242 / tS & NB,242 / tB

cTVTg R242 D242

Then the following model is used to estimate the measurand.

a238 '
NS,238 / tS & NB,238 / tB

mS Yg R238 D238 FS
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Y '
967 / (60,000 s) & 2 / (60,000 s)

(0.0705 Bq/mL)×(1 mL)×0.2805×0.98×1
' 0.82990

a238 '
75 / (60,000 s) & 0 / (60,000 s)

(0.5017 g)×0.82990×0.2805×0.98×0.9990×1.00
' 0.010932 Bq/g

(or 10.932 Bq/kg)

When values are inserted,

19B.4  The Combined Standard Uncertainty

The efficiency, g, effectively cancels out of the equation for a238, because it is multiplied by the
yield Y and also appears as a factor in the denominator of the expression for Y (see also Section
19.5.6). Therefore, the uncertainty of g has no effect on the uncertainty of a238. When using the
uncertainty propagation formula to calculate the combined standard uncertainty of a238, one might
include a covariance term for u(Y,g) to account for the relationship between the measured values
of Y and g, but it is simpler to treat Yg as one variable. Application of the first-order uncertainty
propagation formula (Section 19.4.3) to the equations above then gives the following:

u 2
c (Yg ) '

u 2(NS,242) / t 2
S % u 2(NB,242) / t 2

B

c 2
T V 2

T R 2
242 D 2

242

% (Yg )2 u 2(cT)

c 2
T

%
u 2(VT)

V 2
T

%
u 2(R242)

R 2
242

u 2
c (a238) '

u 2(NS,238) / t 2
S % u 2(NB,238) / t 2

B

m 2
S (Yg )2 R 2

238 D 2
238

% a 2
238

u 2(mS)

m 2
S

%
u 2(Yg )
(Yg )2

%
u 2(R238)

R 2
238

%
u 2(FS)

F 2
S

All other input estimates are assumed to be uncorrelated.

Note that u2(FS) is the subsampling variance associated with taking a small test portion
(0.5017 g) from a much larger sample (2000 g). The estimation method suggested in Section
19.5.12 will be used here to evaluate u(FS).

u(FS) '
1

mS

&
1

mL

kd 3 where k ' 0.0004 g/mm3

'
1

0.5017 g
&

1
2000 g

(0.0004 g/mm3)(1.0 mm)3

' 0.0282.
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Appendix F provides more information about subsampling errors and methods for estimating
their variances.

The standard uncertainty of the mass of the test portion, mS, is evaluated using the methods de-
scribed in Section 19.5.9. The total uncertainty of mS has components due to repeatability, lin-
earity, and sensitivity drift (environmental factors). Assume the repeatability standard deviation
is 0.0001 g, the linearity tolerance is 0.0002 g, and the relative standard uncertainty due to sen-
sitivity drift is 1 × 10!5. If the balance is zeroed with an empty container on the pan, the soil is
added to the container, and the display is read, then the standard uncertainty of the mass mS is

u(mS) ' (0.0001 g)2 % (0.0002 g)2 % (0.5017 g)2 (1 × 10&5)2 ' 2.2 × 10&4 g

Since extremely low counts are possible, each Poisson counting variance in this example will be
estimated by the number of observed counts plus one (see Section 19.5.2.2 and Section 19D.3 of
Attachment 19D). So, for example, u(NB, 238) equals one, not zero.

Table 19.4 summarizes the input estimates and their standard uncertainties.

Other possible sources of uncertainty in alpha-particle spectrometry measurements include:

INPUT
QUANTITY

INPUT
ESTIMATE

STANDARD
UNCERTAINTY

MEASUREMENT
UNIT

TYPE OF
EVALUATION

mS 0.5017 2.2 × 10!4 g Combined*

cT 0.0705 0.0020 Bq/mL Combined*

VT 1.0000 0.0057 mL Combined*

tB 60,000 Negligible s B
tS 60,000 Negligible s B

NB, 238 0 1 counts B
NB, 242 2 1.73 counts B
NS, 238 75 8.72 counts B
NS, 242 967 31.1 counts B

R238, R242 0.98 0.01155 none B
g 0.2805 0.0045 none Combined*

FS 1.00 0.0282 none B
D238 0.9990 Negligible none B
D242 1.0000 Negligible none B

* �Combined� here means �determined by uncertainty propagation.�

TABLE 19.4 � Input estimates and standard uncertainties
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  � uncertainties in half-lives and decay times;
  � spillover and baseline interferences caused by poor peak resolution;
  � incomplete equilibration of tracer and analyte before chemical separation; and
  � changing instrument background.

These uncertainties are evaluated as negligible in this example. Uncertainties associated with
half-lives and decay times are negligible, because the decay times in the example are much
shorter than the half-lives; but in practice one should confirm that any other uncertainties are
small enough to be neglected.

When values are inserted into the formulas

u 2
c (Yg ) ' 968 / (60,000 s)2 % 3 / (60,000 s)2

(0.0705 Bq/mL)2 ×(1 mL)2 ×0.982 ×12

% (0.82990×0.2805)2 0.00202

0.07052
%

0.00572

12
%

0.011552

0.982

' 0.0001094007

' 0.010462

and

u 2
c (a238) '

76 / (60,000 s)2 % 1 / (60,000 s)2

(0.5017 g)2 ×(0.82990×0.2805)2 ×0.982 ×0.99902

% (0.010932 Bq/g)2 (2.2×10&4)2

0.50172
%

0.010462

(0.82990×0.2805)2
%

0.011552

0.982
%

0.02822

12

' 1.98915 × 10&6 Bq2 /g2

' (0.001410 Bq/g)2

So, uc(a238) = 0.00141  or 1.41 . If the result is to be reported with an expandedBq/g Bq/kg
uncertainty calculated from the combined standard uncertainty uc(a238) and a coverage factor
k = 2, the result should appear as (0.0109 ± 0.0028)  or (10.9 ± 2.8)  (dry weight).Bq/g Bq/kg
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u2(y) ' Mf
Mx

u2(x) Mf
Mx

)

(19.46)

ATTACHMENT 19C
Multicomponent Measurement Models

19C.1  Introduction

In this attachment, the term �multicomponent measurement model� means a mathematical model
with more than one output quantity calculated from the same set of input quantities. One com-
mon application of a multicomponent model is the determination of a calibration curve involving
two or more parameters. In principle, the approach to uncertainty propagation described in Sec-
tion 19.4 applies equally well to single-component or multicomponent models. However, a
straightforward implementation of the uncertainty propagation formula for some multicomponent
models may be tedious unless software for automatic uncertainty propagation is available.

At the time of this writing, the joint working group responsible for the GUM is reported to be
developing additional guidance to deal with multicomponent models, but the guidance is not yet
available.

19C.2  The Covariance Matrix

A multicomponent model is most naturally described in terms of vectors and matrices, and the
remainder of this attachment assumes the reader is familiar with those concepts and with the
notation commonly used to describe them. The single-component model, Y = f(X1,X2,�,XN),
which was used earlier, is now replaced by a multicomponent model, Y = f(X), where X and Y
denote column vectors and f denotes a vector-valued function of X. The input vector, which is
formed from the input estimates, xj, will be denoted by x, and the output vector, which is formed
from the output estimates, yi, will be denoted by y. The estimated variances and covariances of all
the input estimates are arranged in a square matrix, called the covariance matrix and denoted
here by u2(x), whose ijth element equals the covariance u(xi,xj). Application of the covariance
equation in Section 19.4.4 leads to the following expression for the covariance matrix of the out-
put vector, y.

In this equation, Mf / Mx denotes the matrix whose ijth element is Mfi / Mxj.

19C.3  Least-Squares Regression

One application for which specialized multicomponent methods for uncertainty propagation may
be useful is least-squares regression. For example the method of least squares may be used to
find an approximate solution, , of a matrix equation of the form�y
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Ay – b (19.47)

�y ' (A)WA)&1A)Wb (19.48)

u2( �y) ' (A)WA)&1 (19.49)

u2( �y) ' (A)WA)&1 %
M �y
Mz

u2(z) M �y
Mz

)

(19.50)

M �y
Mzj

' (A)WA)&1 MA)

Mzj

W (b & A �y) & A)W MA
Mzj

�y (19.51)

where the components of the vector b have uncertainties. The least-squares solution for this prob-
lem can usually be expressed as

where W denotes a diagonal weight matrix, whose ith diagonal element is the inverse of the var-
iance of bi. If there is no uncertainty in the matrix A, and the elements of b are uncorrelated, then
the covariance matrix for  is given simply by�y

If there are uncertainties in the elements of A, the expression above is incomplete. Suppose the
elements of A are functions of variables z1, z2, �, zr, whose estimated variances and covariances
are available. Arrange these variables, zj, in a column vector, z, and let u2(z) denote the
covariance matrix. If the bi are not correlated with the zj, then a more complete expression for the
covariance matrix of  is the following.�y

The derivative matrix, My� / Mz, which appears above, may be calculated column by column. The
jth column of My� / Mz is given by the formula

where MA / Mzj denotes the matrix obtained from A by differentiating each element with respect
to zj. If the uncertainties in the matrix A are large, even this method of uncertainty propagation
may be inadequate (e.g., see Fuller, 1987).

19C.4  References
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ATTACHMENT 19D
Estimation of Coverage Factors

19D.1  Introduction

Although it is common for laboratories to use a fixed coverage factor such as 2 or 3 when deter-
mining an expanded uncertainty for a measured value, the true coverage probability for the resul-
ting interval may be lower than expected if the standard uncertainties of the input estimates are
determined from evaluations with too few degrees of freedom. This attachment summarizes a
general method presented in Annex G of the GUM for determining appropriate coverage factors
in these circumstances (ISO, 1995). Section 19D.3 applies the method to Poisson counting uncer-
tainties.

19D.2  Procedure

19D.2.1  Basis of Procedure

When one evaluates a parameter, θ, statistically by making a series of n independent, unbiased
measurements under the same measurement conditions and averaging the results, xi, if the results
are approximately normally distributed, a confidence interval for θ may be constructed using the
fact that the quantity (  ! θ) /  has a t-distribution with ν = n ! 1 degrees of freedom. If thex̄ s(x̄)
desired confidence level is p, then the confidence interval is , where t = t(1+p)/2(ν) is thex̄ ± t s(x̄)
(1 + p) / 2-quantile of a t-distribution with ν degrees of freedom. Here,  is the result of thex̄
measurement of θ, and  is its standard uncertainty (Type A). The quantile, t, is the coverages(x̄)
factor that makes the coverage probability equal to p. For smaller values of ν, larger values of t
are necessary to give the same coverage probability, because of the increased variability of the
variance estimator, .s 2(x̄)

The procedure described below is derived by assuming that the output estimate, y, for a more
complex measurement and the combined standard uncertainty, uc(y), can take the place of  andx̄

, respectively, in the confidence interval above; and that the appropriate coverage factor, kp,s(x̄)
can be approximated by a quantile of a t-distribution with an appropriate number of degrees of
freedom. The number of degrees of freedom is determined from the estimated coefficient of vari-
ation of the variance estimator, .u 2

c (y)

19D.2.2  Assumptions

Assume the mathematical model for a measurement is Y = f(X1,X2,�,XN), the input estimates
x1, x2, �, xN are independent, and the output estimate is y = f(x1,x2,�,xN). Also assume that the
combined standard uncertainty of y is not dominated by one component determined from a Type
A evaluation with only a few degrees of freedom or from a Type B evaluation based on a distri-
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20 A more rigorously derived mathematical definition of νi in terms of ∆u(xi) exists, but its use is not warranted
given the usually subjective nature of the estimate of ∆u(xi) and the other approximations involved in the Welch-
Satterthwaite formula.
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u 4
c (y)
ν eff

'j
N

i'1

u 4
i (y)
ν i

or νeff '
u 4

c (y)

j
N

i'1

u 4
i (y)
ν i

(19.52)

ν i '
1
2

u 2(xi)

σ2 u(xi)
'

1
2

∆u(xi)
u(xi)

&2

(19.53)

bution very different from a normal distribution. Then the distribution of the output estimate y
should be approximately normal, and the following procedure may be used to obtain a coverage
factor, kp, for the expanded uncertainty of y that gives a desired coverage probability, p.

19D.2.3  Effective Degrees of Freedom

First compute the effective degrees of freedom of the measurement, νeff, using the Welch-
Satterthwaite formula

Here ui(y) = |Mf / Mxi| u(xi) is the component of the combined standard uncertainty generated by
u(xi). If u(xi) is evaluated by a Type A method, then νi is the number of degrees of freedom for
that evaluation. If u(xi) is evaluated instead by a Type B method, then νi may be defined as

where ∆u(xi) is the estimated standard deviation of the standard uncertainty, u(xi), and σ2(u(xi))
denotes its square. This definition of νi for a Type B evaluation is an approximation based on the
relationship between the number of degrees of freedom for a Type A evaluation and the coeffi-
cient of variation of the uncertainty estimator. In most cases estimation of ∆u(xi) is subjective and
requires professional judgment.20

In some cases one may consider the value of ∆u(xi) for a Type B standard uncertainty to be zero
or negligible, as for example when evaluating the uncertainty associated with rounding a number
(Section 19.5.11) or when the standard uncertainty estimate, u(xi), is very conservative. In such
cases one may assume νi = 4; so, the ith term of the sum appearing in the denominator of the
Welch-Satterthwaite formula vanishes.

If an input estimate, xi, and its standard uncertainty, u(xi), are taken from a calibration certificate,
the effective degrees of freedom for u(xi) may be stated on the certificate. In this case the stated
number of degrees of freedom should be used as νi.
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21 The GUM uses the notation tp(ν) to denote the (1 + p) / 2-quantile of a t-distribution with ν degrees of freedom
(ISO, 1995), but the same notation in most statistical literature denotes the p-quantile (e.g., ISO, 1993). MARLAP
follows the latter convention.
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min
1# i#n

ν i # ν eff #j
n

i'1
ν i (19.54)

kp ' n % 1 & νeff t(1%p) /2(n) % νeff & n t(1%p) /2(n % 1) (19.55)

The number of effective degrees of freedom, νeff, satisfies the following inequalities.

So, νeff is no worse than the worst value of νi and no better than the sum of all the νi. The maxi-
mum (best) value for νeff in Equation 19.54 is attained only if each νi is proportional to ui

2(y). This
fact suggests that, at least for Type A uncertainty components, the fraction of the total uncertainty
evaluation effort spent on a particular component, ui(y), should be based on the anticipated mag-
nitude of ui

2(y).

19D.2.4  Coverage Factor

The coverage factor, kp, is defined to be the (1 + p) / 2-quantile, t(1 + p) / 2(νeff), of a t-distribution
with νeff degrees of freedom.21 Since the calculated value of νeff will generally not be an integer, it
must be truncated to an integer, or else an interpolated t-factor should be used. That is, if n <
νeff < n + 1, then use either kp = t(1 + p) / 2(lνeffm), where l@m denotes the truncation operator, or

The expanded uncertainty Up = kpuc(y) is estimated to have a coverage probability approximately
equal to p.

EXAMPLE 19.31

Problem: Refer to the efficiency-calibration problem presented in Example 19.20 in Section
19.5.6. The efficiency for a radiation counter, g, is calculated using the equation

g ' R
aS

where  (62.1854 s!1@g!1) and its uncertainty (0.2301 s!1@g!1) are determined from 15 replicateR
measurements (14 degrees of freedom), and aS (150.0 ) and its uncertainty (2.0 )Bq/g Bq/g
are obtained from a calibration certificate. The calculated efficiency is 0.4146 and its com-
bined standard uncertainty is 0.005736.
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Assume the certificate states that the number of effective degrees of freedom for u(aS) is 12.5.
Find the effective degrees of freedom for uc(g), the coverage factor, k0.95, that gives 95 %
coverage probability, and the expanded uncertainty, U0.95.

Solution: The component of the combined standard uncertainty of g generated by  isu(R)

uR(g ) ' /000 /000
Mg
MR

u(R) ' 1
aS

u(R) ' 0.2301 s&1 @g&1

150.0 Bq/g
' 0.001534.

The component generated by u(aS) is

uaS
(g ) ' /000 /000

Mg
MaS

u(aS) ' R

a 2
S

u(aS) ' 62.1854 s&1 @g&1

(150.0 Bq/g)2
(2.0 Bq/g) ' 0.0055276.

So, the number of effective degrees of freedom, νeff, for uc(g) is given by

νeff '
u 4

c (g )

u 4
R(g )

νR

%
u 4

aS
(g )

νaS

'
(0.005736)4

0.0015344

15 & 1
%

0.00552764

12.5

. 14.42 .

Since 14.42 is not an integer, an interpolated t-factor may be used (see Table G.2 in Appendix
G). The coverage factor for 95 % coverage probability is

k0.95 ' (15 & 14.42) t0.975(14) % (14.42 & 14) t0.95(15) ' (0.58)(2.145) % (0.42)(2.131) ' 2.139.

So, the expanded uncertainty is

U0.95 ' k0.95 uc(g ) ' (2.139)(0.005736) . 0.012.

19D.3  Poisson Counting Uncertainty

As stated in Section 19.5.2.2, the standard uncertainty in the number of counts, N, observed
during a radiation measurement may often be estimated by u(N) = , according to the PoissonN
counting model. This method of evaluating the standard uncertainty is a Type B method; so, the
effective degrees of freedom ν for the evaluation should be determined from ∆u(N). The standard
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22 Taking the square root of a Poisson random variable is a common variance-stabilizing transformation, as
described in Chapter 20 of Experimental Statistics (NBS, 1963). The stated (slightly conservative) upper bound for
the standard deviation of  is based on calculations performed at the EPA�s National Air and Radiation Environ-N
mental Laboratory, although the same approximate value may be determined by inspecting Figure 20-2 of NBS
(1963). The precise calculation maximizes a function f(x) whose value is the variance of the square root of a Poisson
random variable with mean x. The first derivative of f is positive, decreasing and convex between x = 0 and the
location of the maximum of the function at x = 1.31895; so, Newton�s Method converges to the solution from
below. The maximum value of f is found to be (0.642256)2.
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u(N) ' N and ν ' 2N (19.56)

u(N) ' N % 1 and ν ' 2(N % 1) (19.57)

deviation of  is always less than 0.65.22 If N is greater than about 10, the standard deviation ofN
 is approximately equal to 0.5, and, in this case, Equation 19.53 gives the estimate ν . 2N.N

For smaller values of N, the same approximation is inadequate.

MARLAP recommends that the standard uncertainty, u(N), and degrees of freedom, ν, for a
Poisson measured value, N, be estimated by

or, if very low counts are possible, by

If the expected count is greater than about 10, these formulas tend to give a coverage probability
near the desired probability, p. When the expected count is small, the coverage probability tends
to be greater than p.

Although the estimate u(N) =  may be derived by the Bayesian approach to countingN % 1
statistics assuming a flat prior distribution for the mean count (Friedlander et al., 1981), the
recommended expressions for u(N) and ν in Equation 19.57 have been chosen for the purely
practical reason that they are simple and seem to give satisfactory results. When the count is low,
the assumptions underlying the Welch-Satterthwaite formula are usually violated, because the
combined standard uncertainty is dominated by counting uncertainty, and the distribution of the
count is not normal. However, even in this case, if the formula is used, the recommended expres-
sions for u(N) and ν tend to give conservative results.

EXAMPLE 19.32

Problem: An alpha spectrometer is used to make a 60,000-second blank measurement fol-
lowed by a 60,000-second sample measurement. The observed blank count is 2 and the
observed sample count is 0. The net count rate is modeled as
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RN '
NS

tS

&
NB

tB

where
RN is the net count rate (!3.333 × 10!5 s!1);
NS is the sample count (0);
tS is the sample count time (60,000 s);
NB is the blank count (2); and
tB is the blank count time (60,000 s).

Assume the only source of uncertainty is Poisson counting statistics. Determine the effective
degrees of freedom for uc(RN) and the coverage factor, k0.95, that gives 95 % coverage proba-
bility.

Solution: Since very low counts are possible,

u(NS) ' NS % 1 ' 1 and νNS
' 2(NS % 1) ' 2

u(NB) ' NB % 1 ' 1.732 and νNB
' 2(NB % 1) ' 6

Then

uc(RN) '
u 2(NS)

t 2
S

%
u 2(NB)

t 2
B

'
1

(60,000 s)2
%

3
(60,000 s)2

' 3.333 × 10&5 s&1

uNS
(RN) ' /0000

/0000
MRN

MNS

u(NS) ' 1
tS

NS % 1 '
1

60,000 s
' 1.667 × 10&5 s&1

uNB
(RN) ' /0000

/0000
MRN

MNB

u(NB) ' 1
tB

NB % 1 '
1.732

60,000 s
' 2.887 × 10&5 s&1

So, the number of effective degrees of freedom is

νeff '
u 4

c (RN)

u 4
NS

(RN)

νNS

%
u 4

NB
(RN)

νNB

'
(3.333 × 10&5)4

(1.667 × 10&5)4

2
%

(2.887 × 10&5)4

6

' 8
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Then the coverage factor for a 95 % coverage probability is obtained from Table G.2 in
Appendix G.

k0.95 ' t0.975(8) ' 2.306

Notice that in this example, , but this equality would not hold if the count timesνeff ' νNS
% νNBfor the sample and blank were unequal.

Also notice that the net count rate in this example is negative. Negative results may be com-
mon when environmental samples are analyzed for anthropogenic radionuclides.
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ATTACHMENT 19E
Uncertainties of Mass and Volume Measurements

19E.1  Purpose

This attachment describes methods that may be used to evaluate the measurement uncertainty of
a mass or liquid volume measurement. The first purpose of the attachment is to provide methods
for more complete evaluations of these uncertainties than those presented earlier in Sections
19.5.9 and 19.5.10. A second purpose is to provide additional examples of uncertainty evalua-
tions, and especially Type A evaluations based on historical data, as described in Section
19.4.2.1.

A third purpose of the attachment is to provide information about the sources of error in mass
and volume measurements that may be useful for establishing reasonable quality control criteria.
Even if one assumes that weighing and pipetting errors are negligible, the quality control for bal-
ances and volumetric apparatus should be strict enough to ensure the assumption is true. Some of
the sources of error described below will undoubtedly be considered negligible in many radio-
chemical measurement processes, yet they may be too large to be ignored in a strict quality con-
trol program.

The existence of the attachment is not meant to imply that the uncertainties of mass and volume
measurements tend to be relatively important in a radiochemistry laboratory. In fact the relative
standard uncertainties of mass and volume measurements tend to be small if the measurements
are made properly using appropriate instruments, and they may even be negligible in many cases
when compared to other uncertainties associated with radiochemical analysis (e.g., see Section
19.5.12, �Subsampling�). However, one needs to know the performance limits of any measuring
instrument. For example the measurement uncertainty may actually be relatively large if a labora-
tory balance is used to weigh a mass that is too small for it. The uncertainty may also be large in
some cases if the sensitivity of the balance varies slightly between tare and gross measurements. 

19E.2  Mass Measurements

19E.2.1  Considerations

Regardless of the methods used to evaluate balance measurement uncertainty, the results may be
misleading unless the balance is well maintained and protected from external influences, such as
drafts and sudden changes in pressure, temperature and humidity.

The appropriate method for evaluating the standard uncertainty of a mass measured using a bal-
ance depends on the type of balance, including its principles of calibration and operation, but the
uncertainty of the measured result generally has components associated with balance sensitivity,
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linearity, repeatability, and air buoyancy. Typically, the component associated with sensitivity
includes the uncertainty of calibration and may include variability caused by changing environ-
mental conditions, such as temperature. Other sources of uncertainty may include leveling errors
and off-center errors, which should be controlled. Static electrical charges may also have an
effect. Changes in mass (e.g., by absorption or evaporation of water) may be very significant for
some materials.

19E.2.2  Repeatability

The repeatability of a balance is expressed as a standard deviation and is usually assumed to be
independent of the load. It represents the variability of the result of zeroing the balance, loading a
mass on the pan, and reading the indication.

Balance manufacturers provide specifications for repeatability, but a test of repeatability should
also be part of the routine quality control for the balance (see ASTM E898). The simplest pro-
cedure for evaluating repeatability is to make a series of replicate measurements of a mass stan-
dard under �repeatability conditions.� Repeatability conditions require one balance, one observer,
one measurement location, and repetition during a short time period. For each measurement one
must zero the balance, load the mass standard, and read the balance indication.

EXAMPLE 19.32  Suppose a laboratory balance has readability 0.0001 g, and, according to the
manufacturer, the repeatability is also 0.0001 g. An analyst performs a series of 28 measure-
ments using a 1-gram mass standard to check the repeatability. The results are listed below.

1.0001
1.0002
0.9998
0.9999
0.9998
0.9996
1.0002

0.9996
0.9999
0.9999
0.9999
0.9998
0.9999
0.9999

0.9999
0.9999
1.0000
0.9999
1.0000
0.9999
1.0001

1.0002
1.0001
1.0001
1.0001
0.9998
1.0000
1.0004

The analyst calculates the average, , and standard deviation, s, of these values (Wi) asW
follows.

W '
1
28 j

28

i'1
Wi ' 0.9999607 g

s ' 1
28 & 1 j

28

i'1
(Wi & W)2 ' 0.00018 g

So, the analyst evaluates the repeatability to be 0.00018 g.
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sr '
1

K (J & 1) j
K

k'1
j

J

j'1
(xk, j & x̄k)

2 (19.58)

In this example, since the mass standard is so small, it may not be important that all the meas-
urements be made during a short time period. Environmental factors produce relatively small
day-to-day variability in the balance indication, and this variability may not be observable for a
1-gram load. So, the repeatability might be evaluated using the results of 28 routine quality
control measurements.

A nested experimental design can also be used to evaluate both the repeatability and the day-to-
day (or hour-to-hour) variability due to environmental factors. In this procedure, one makes a
series of replicate measurements with the same mass standard each day for a number of days, or
perhaps in a morning session and afternoon session each day. Ideally, one should use a mass near
the capacity of the balance to obtain the most reliable estimate of day-to-day variability, but
almost any mass in the balance�s range will do for an estimate of repeatability. The repeatability
standard deviation is estimated by

where
sr is the estimated repeatability standard deviation;
J is the number of repetitions per session;
K is the number of sessions;
xk,j is the jth result obtained in the kth session; and

is the average of all the results in the kth session.x̄k

The repeatability standard deviation determined by this method is a Type A standard uncertainty
with K (J ! 1) degrees of freedom.

19E.2.3  Environmental Factors

The correct method for evaluating the balance measurement uncertainty due to environmental
factors depends strongly on the method and frequency of calibration. Some balances, especially
newer models, have internal calibration masses, which allow frequent calibration with only the
push of a button. Other balances use external calibration mass standards and require more care in
the calibration process. Balances of the latter type in many cases are calibrated infrequently. If a
balance is calibrated immediately before a measurement, then the uncertainty due to environ-
mental factors can be considered to be zero. However, if hours or days pass between the time of
calibration and the time of measurement, then this uncertainty component may be significant. For
the remainder of this subsection, the latter case is assumed.
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23 An F-test may be used to test for the presence of variance due to environmental factors. If this variance is zero,
then the quantity , where  denotes the experimental variance of the averages , may be assumed to haveJs 2

x̄ / s 2
r s 2

x̄ x̄ i
an F-distribution with K ! 1 numerator degrees of freedom and K(J ! 1) denominator degrees of freedom.
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s 2
env '

1
K & 1 j

K

k'1
(x̄k & x)2 &

s 2
r

J
(19.59)

φenv '
senv

mcheck
(19.60)

Given the nested experimental data from the preceding section, one may estimate the variability
due to environmental factors (day-to-day or hour-to-hour variability) as follows.23

where
se

2
nv is the estimated variance due to environmental factors and

is the grand average of all the data (the average of the ).x x̄k

If se
2
nv is found to be positive, then senv is estimated by its square root; otherwise, senv is assumed to

be zero. One estimates the relative component of standard uncertainty of a measured mass due to
environmental factors by

where mcheck is the mass of the standard used in the experiment.

If the variability due to environmental factors is large, its magnitude can also be estimated by
weighing a heavy mass standard once per day for a number of days, or perhaps once in the morn-
ing and once in the afternoon of each day. Clearly, the observed variability will include the
effects of both environmental factors and repeatability, but environmental factors presumably
dominate when a heavy mass is weighed, because their effect is proportional to the mass,
whereas the repeatability is essentially constant at all masses. So, the observed variability can be
used as a reasonable estimate of the variability due to environmental factors alone.

EXAMPLE 19.33  Suppose a laboratory balance has readability 0.0001 g, repeatability
0.0001 g, and a capacity of approximately 110 g. An analyst performs QC measurements using
masses of 1, 50, and 100 g. The results obtained using the 100-gram mass standard during a
certain time period are as follows:

99.9992
100.0001
99.9993
99.9989
99.9992

100.0002
99.9989

99.9989
99.9990
99.9988

100.0015
99.9992
99.9997
99.9990

99.9986
100.0002
100.0003
99.9989

100.0012
100.0002
100.0011

100.0008
100.0010
99.9975
99.9981

100.0009
100.0005
99.9991
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φcal ' φ2
env %

s 2
r % δ2

cal / 6

m 2
cal

(19.61)

The average, , and standard deviation, s(Wi), of these values are calculated below.W

W '
1
28 j

28

i'1
Wi ' 99.9996536 g

s(Wi) '
1

28 & 1 j
28

i'1
(Wi & W)2 ' 0.001016 g

Since this standard deviation is much larger than the repeatability, 0.0001 g, essentially all of
the variability may be attributed to environmental factors. The estimate is slightly inflated by
the balance�s repeatability variance, but the difference in this case is only about 0.5 % of the
value shown. So, the relative standard uncertainty due to environmental factors is estimated as

φenv '
0.001016

100
. 1.0 × 10&5

19E.2.4  Calibration

The uncertainty of calibration includes components associated with the mass standard or stan-
dards, repeatability, and variability due to environmental factors.

When a precision mass standard is used for calibration, the standard uncertainty of its mass is
generally negligible. However, the uncertainty may be evaluated if necessary from the specified
mass tolerance. For example, a 100-gram ASTM Class-1 mass standard has a tolerance of
0.00025 g, which may be assumed to represent the half-width of a triangular distribution centered
at zero (ASTM E617). The standard uncertainty may be found by dividing this tolerance by 6
and is approximately 0.00010 g, or 1.0 × 10!6 when expressed in relative terms.

The total relative standard uncertainty of a mass measurement due to calibration may be esti-
mated as follows.

where
φcal is the total relative standard uncertainty of a balance measurement due to calibration;
φenv is the relative standard uncertainty due to environmental factors;
sr is the repeatability standard deviation;
δcal is the tolerance for the mass of the calibration standard; and
mcal is the mass of the standard used for calibration.
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FIGURE 19.13 � Nonlinear balance response curve 

If environmental conditions are not well-controlled, φenv may tend to dominate the other compo-
nents here, since both sr and δcal are much smaller than mcal.

19E.2.5  Linearity

The linearity of a balance should be specified by the manufacturer as a tolerance, aL, which repre-
sents the maximum deviation of the balance indication from the value that would be obtained by
linear interpolation between the calibration points. Routine quality control should ensure that the
linearity remains within acceptable limits.

The Eurachem/CITAC Guide: Quantifying Uncertainty in Analytical Measurement recommends
that the linearity tolerance aL be treated as the half-width of a rectangular distribution and that aL
therefore be divided by  to obtain the standard uncertainty (Eurachem, 2000). However, since3
the linearity error is likely to vary as a sinusoidal function of the load, as illustrated in Figure
19.13, the divisor  may be more appropriate. So, the standard uncertainty due to linearity for a2
simple mass measurement may be evaluated as . Whether one uses  or the moreaL / 2 3
conservative value  depends partly on how conservative one believes the estimate of aL to be.2

19E.2.6  Gain or Loss of Mass

When gain or loss of mass is a relevant issue, as for example when the material being weighed is
a volatile liquid or a hygroscopic solid, the mass should be treated as a function of time. One
method of determining this function is to weigh the material at different times, recording both the
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m ' Inet B (19.62)

B '
1 & kA,C / kC

1 & kA,M / kM
(19.63)

time and the observed mass, and fit a line or curve to the resulting data points. One can then cal-
culate the mass at a particular time of interest (e.g., before any gain or loss occurred, or perhaps
during the period when the material was in a radiation counter). If possible, it is better to weigh
the material both before and after the time of interest to avoid extrapolating the curve to points in
time where its accuracy may be unknown. However, in some situations extrapolation may be
necessary, as for example when determining the dry mass of a hygroscopic precipitate.

The standard uncertainty of a mass calculated in this manner includes components for curve-
fitting errors.

19E.2.7  Air-Buoyancy Corrections

Air-buoyancy corrections are not often performed in radiochemistry laboratories, because they
are usually negligible in comparison to the overall uncertainty of the result. However, when the
measurand is the mass itself and not some other quantity such as a radionuclide concentration
whose calculated value depends on the mass, buoyancy corrections may be important. Failure to
correct for air buoyancy when weighing water, for example, introduces a relative error of
approximately !0.1 %, which may be much larger than the standard uncertainty of the un-
corrected mass (e.g., when weighing a gram or more of an aqueous solution on a typical four-
place analytical balance).

When a buoyancy-correction factor is used, the true mass is estimated as follows.

where

and
m is the corrected value for the mass of the material being weighed;
Inet is the net balance indication;
B is the buoyancy-correction factor;
kM is the density of the material being weighed;
kAM is the density of the air at the time the material is weighed;
kC is the density of the calibration mass standard; and
kAC is the density of the air at the time of calibration.

The standard uncertainty of B may be obtained as follows.
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u 2(B)
B 2

'

u 2(kAC)

k2
AC

& 2
u(kAC,kC)
kACkC

%
u 2(kC)

k2
C

kC

kAC

& 1
2

%

u 2(kAM)

k2
AM

& 2
u(kAM,kM)
kAMkM

%
u 2(kM)

k2
M

kM

kAM

& 1
2

(19.64)

kA ' k0
273.15 K

273.15 K % t
p & (0.3783)φeS

101.325 kPa
(19.65)

kA '
ap & φ (bt & c)
273.15 K % t (19.66)

Evaluation of this uncertainty requires estimates of kM, kC, kAM and kAC as well as their standard
uncertainties and covariances. The covariance u(kAC,kC) is usually zero or negligible, and
u(kAM,kM) also is usually negligible if the material being weighed is a solid.

Clearly, u(B) tends to be no more significant in a radiochemical measurement than the factor B
itself is, but it may generate a large fraction of the uncertainty of the mass, m, since the uncer-
tainty of the mass is often tiny.

The density of air (kA) depends on temperature, pressure, and humidity, as shown in the
following equation.

where
kA is the density of air;
k0 is the density of dry air at 0 EC and 101.325 kPa (1 atm);
t is the Celsius temperature;
p is the barometric pressure;
φ is the relative humidity (a fraction between 0 and 1); and
eS is the saturation vapor pressure of water at temperature t.

The vapor pressure, eS, is a nonlinear function of t, but it can be approximated by a linear func-
tion in the range of temperatures typically encountered in the laboratory. When this approxima-
tion is made, the resulting equation for the air density may be written as follows.

where
a   =  3.48589 × 10!3 K @ s2 / m2;
b   =  2.5211151 × 10!4 g / mL; and
c   =  2.0590571 × 10!3 K @ g / mL.
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u(kA) '
a 2 u 2(p) % (bφ % kA)2 u 2(t) % (bt � c)2 u 2(φ)

273.15 K % t
(19.67)

If p is expressed in kPa and t in EC, then Equation 19.66 with the given numerical values of a, b,
and c provides the numerical value of the density, kA, in or .kg/L g/mL

Then the standard uncertainty of kA is given by

The densities of the calibration weight (kC) and of the solid or liquid material being weighed (kM)
also depend on temperature somewhat, but these temperature effects can usually be safely ig-
nored when calculating the uncertainty of the buoyancy-correction factor, since temperature
affects the density of air much more than the density of a solid or liquid.

The effect of pressure on the density of the material being weighed can also usually be neglected.
For most practical purposes, the compressibility of a solid or liquid can be considered to be zero. 

EXAMPLE 19.34  Suppose the density of the weighed material, kM, is 0.5 g/mL with a toler-
ance of 0.2 g/mL, assumed to represent the half-width of a triangular distribution. The density
of the calibration mass standard, kC, is 7.850 g/mL with a tolerance of 0.025 g/mL. Instead of
measuring temperature, pressure and humidity at the time of each measurement, the laboratory
assumes the following nominal values and tolerances:

Temperature (t) (22.5 ± 2.5) EC
Pressure (p) (101.3 ± 2.0) kPa
Relative humidity (φ)  (0.60 ± 0.25)

Recall that
a   =  3.48589 × 10!3 K @ s2 / m2;
b   =  2.5211151 × 10!4 g / mL; and
c   =  2.0590571 × 10!3 K @ g / mL.

Then the air density is calculated as follows.
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kAC ' kAM '
ap & φ × (bt & c)

273.15 K % t

'
a × (101.3 kPa) & 0.60 × (b × (22.5EC) & c)

273.15 K % 22.5EC

'
(0.353121 K @ g / mL) & (0.002168 K @ g / mL)

295.65 K

'
0.350953 K @ g / mL

295.65 K

' 1.1871 × 10&3 g/mL

(For convenience, unit symbols will be omitted from intermediate steps in the equations
below.)

If each of the tolerances for t, p, and φ represents the half-width of a triangular distribution,
then

u 2(t) ' 2.52

6
' 1.04 , u 2(p) ' 2.02

6
' 0.667, and u 2(φ) ' 0.252

6
' 0.0104

So, the standard uncertainties of kAC and kAM are

u(kAC) ' u(kAM) '
a 2 u 2(p) % (bφ % kA)2 u 2(t) % (bt & c)2 u 2(φ)

273.15 % t

'
a 2 (0.667) % (b × 0.60 % 1.1871 × 10&3)2 (1.04) % (b × 22.5 & c)2 (0.0104)

273.15 % 22.5

' 1.08 × 10&5 g/mL

Then the buoyancy-correction factor is

B '
1 & kAC / kC

1 & kAM / kM

'
1 & (1.1871 × 10&3 / 7.85)
1 & (1.1871 × 10&3 / 0.5)

' 1.00223

The tolerances for the densities kC and kM are the half-widths of triangular distributions; so,

u 2(kC) ' 0.0252

6
and u 2(kM) ' 0.22

6
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24 Variations in temperature, humidity, and pressure may produce a correlation between the buoyancy-correction
factor, B, and the balance indication, I, because of the influence of environmental factors on the balance�s sensi-
tivity. The correlation is assumed here to be negligible.
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u(m) ' B 2 I 2 (φ2
cal % φ

2
env) %

a 2
L

2
% s 2

r % I 2 u 2(B) (19.68)

The covariances u(kAC, ρC) and u(kAM, kM) are zero in this example. So, the standard uncer-
tainty of B is

u(B) ' B
u 2(kAC) / k2

AC % u 2(kC) / k2
C

(kC / kAC � 1)2
%

u 2(kAM) / k2
AM % u 2(kM) / k2

M

(kM / kAM � 1)2

' 1.00223

(1.08 × 10&5)2

(1.1871 × 10&3)2
%

0.0252 / 6
7.852

7.85
1.1871 × 10&3

� 1
2

%

(1.08 × 10&5)2

(1.1871 × 10&3)2
%

0.22 / 6
0.52

0.5
1.1871 × 10&3

� 1
2

' 3.9 × 10�4

Thus, the buoyancy-correction factor increases the result of the measurement by about 0.2 %
and generates a relative standard uncertainty component of approximately 0.04 %. An exam-
ination of the calculation reveals that the uncertainty of B in this case is dominated by the
uncertainty of ρM, the density of the material being weighed. Note that the uncertainty of B is
very small and would generally be considered negligible in the final result of a radiochemistry
measurement, but it may represent a significant fraction of the uncertainty of the mass meas-
urement.

19E.2.8  Combining the Components

When the balance is used to measure the mass, m, of an object placed on the pan, the mass is
given by m = IB, and its standard uncertainty by

where
m is the buoyancy-corrected mass;
I is the balance indication;
B is the buoyancy-correction factor24;
ncal is the relative standard uncertainty due to calibration;
nenv is the relative standard uncertainty due to environmental factors;
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m ' Inet B

u(m) ' B 2 I 2
net (φ

2
cal % φ

2
env) % a 2

L % 2s 2
r % I 2

net u 2(B)
(19.69)

m ' Inet B

u(m) ' B 2 I 2
netφ

2
cal % (I 2

tare % I 2
gross)φ

2
env % a 2

L % 2s 2
r % I 2

net u 2(B)
(19.70)

aL is the linearity tolerance; and
sr is the repeatability standard deviation.

Often the balance is used to weigh material in a container. The balance is zeroed with the empty
container on the pan and the container is then filled and weighed. In this case the linearity uncer-
tainty component is counted twice, because the linearity error is assumed to vary between the two
loads. (This assumption tends to be conservative when small masses are weighed.) Although the
buoyancy factors for the container and its contents may differ because of the different densities of
the materials, the only value of B that is used is the buoyancy factor for the material being
weighed.

In a third scenario the empty container is weighed, removed from the pan, and then filled with
material. The balance is zeroed again, and the filled container is weighed. In this case both the
linearity and repeatability components of uncertainty must be counted twice, because two distinct
measurements are made. So, the corrected net mass and its standard uncertainty are

where
Inet is the net balance indication (gross ! tare) and
B is the buoyancy factor for the material being weighed.

In a variant of the third scenario, the same weighing procedure is used but there is a significant
time delay between the tare and gross measurements, which allows environmental conditions to
change and the balance sensitivity to drift. In this case the mass and its standard uncertainty
should be calculated as follows.

where Itare and Igross denote the balance indications for the tare and gross measurements, respec-
tively. In this scenario the uncertainty due to environmental effects may be relatively large if the
tare mass is large relative to the net. When this is true, the analyst should consider measuring and
correcting for the sensitivity drift.

19E.3  Volume Measurements

Section 19.5.10 presents a simplified approach to the evaluation of the uncertainty of a volume
measurement, which may be adequate for most purposes in a typical radiochemistry laboratory.
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This section describes experimental methods for evaluating the uncertainty components de-
scribed in Section 19.5.10 and also considers additional uncertainty components.

The density of a liquid depends on its temperature. For this reason, when a volume is measured,
it may be important whether the volume of interest is the volume at the current room tempera-
ture, the long-term mean room temperature, or some other temperature, such as 20 EC. However,
one should determine whether the effect of temperature is really significant for the measurement,
since temperature effects are usually very small.

If the quantity of interest is the volume at room temperature when the volume is measured, the
effects of temperature can usually be ignored. The following discussion assumes that the quantity
of interest is the volume at the mean room temperature and that the actual room temperature may
fluctuate within specified limits.

Three approaches to uncertainty evaluation for volume measurements are discussed. The follow-
ing uncertainty components are considered:

  � The capacity of the measuring device,
  � Repeatability, 
  � The analyst�s bias in using the device (e.g., reading a meniscus), and
  � Temperature effects.

19E.3.1  First Approach

The first approach considered here is appropriate for volumetric glassware. Example 19.26 in
Section 19.5.10 illustrates this approach using only the uncertainty components associated with
capacity and repeatability, which tend to be dominant.

CAPACITY

The capacity of a volumetric pipet or flask (at 20 EC) is generally specified with a tolerance, δcap,
which may be assumed to represent the half-width of a rectangular or triangular distribution (e.g.,
see ASTM E288 and ASTM E969). The Eurachem/CITAC Guide recommends a triangular
distribution, which is based on the assumption that values near the nominal value are more likely
than those near the extremes (Eurachem, 2000). Using a triangular distribution, one evaluates the
uncertainty component of the volume associated with the capacity as .δcap / 6

REPEATABILITY

As described in Section 19.5.10, one may evaluate the uncertainty associated with precision, or
repeatability, for volumetric glassware by obtaining the dimensions of the glassware and esti-
mating the maximum �possible� deviation of the meniscus from the capacity line. ASTM E969,
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δrep '
πδmen d 2

4
(19.71)

�Standard Specification for Glass Volumetric (Transfer) Pipets,� specifies that the internal cross-
section of any Class A or Class B pipet must be circular, and provides ranges of permissible in-
ternal diameters at the capacity mark. If d denotes the actual diameter and δmen denotes the maxi-
mum deviation of the meniscus from the capacity mark, then the maximum deviation of the
volume from its value at the capacity mark is given by

When δmen and d are expressed in centimeters, Equation 19.71 gives the maximum volume devia-
tion, δrep, in milliliters. Then if δmen is assumed to represent the half-width of a triangular distribu-
tion, the standard uncertainty of the volume due to repeatability is , which equalsδrep / 6

.
πδmen d 2

4 6

ANALYST�S BIAS

A similar method can be used to evaluate the uncertainty due to the analyst�s bias in reading the
meniscus. One estimates the maximum possible systematic error in the height of the meniscus,
δsys, and evaluates the associated uncertainty component of the volume as

.
πδsysd

2

4 6

Presumably the value of δsys should be only a fraction of that of δmen; so, this uncertainty should
contribute little to the total uncertainty of a single volume measurement, although it may be
relatively more significant if the glassware is used to dispense several aliquants of liquid in a
single experiment.

TEMPERATURE EFFECTS

Temperature influences a volume measurement through its effects on the density of the liquid
and the capacity of the glassware. Both effects tend to be very small and can often be ignored.

Volumetric glassware is calibrated at 20 EC, but the glassware expands with increasing tempera-
ture. For most purposes the effect of temperature on capacity can be ignored, because it is much
smaller than the effect on the density of the liquid. For example, the capacity of ASTM Type I,
Class A, borosilicate glassware increases by only about 0.001 % for each degree Celsius of tem-
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Vt ' V20 (1 % αV (t & 20 EC)) (19.72)

perature increase. Temperature effects on softer materials, such as plastic, may be more signifi-
cant; however, soft plastic volumetric ware is seldom used when high accuracy is required.

The glassware�s capacity at room temperature may be approximated by

where
t is the room temperature (Celsius);
Vt is the capacity at temperature t;
V20 is the nominal capacity at 20 EC; and
αV is the glassware�s coefficient of thermal cubical expansion.

Table 19.5, which is taken from ASTM E542, lists values of αV for materials often used in volu-
metric ware. The referenced document does not provide the uncertainties of these values, but
relative tolerances of ±10 % (triangular distribution) seem reasonable. The actual uncertainty is
likely to be insignificant to the analyst.

Example 19.35  An analyst uses a 1-milliliter ASTM Type I, Class A borosilicate glass pipet
to dispense an aliquant of a solution when the room temperature is approximately 22.5 EC.
The actual volume dispensed is estimated to be

Vt = (1 mL)(1 + (0.000010 EC!1)(22.5 EC ! 20 EC)) = 1.000025 mL

The analyst considers the temperature correction and its uncertainty in this case to be negli-
gible.

Material Coefficient of cubical expansion, EC!1

Fused silica (quartz)           0.0000016

Borosilicate glass (Type I, Class A)           0.000010

Borosilicate glass (Type I, Class B)           0.000015

Soda-lime glass           0.000025

Polypropylene plastic           0.000240

Polycarbonate plastic           0.000450

Polystyrene plastic           0.000210

TABLE 19.5 � Coefficients of cubical expansion
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V ' Ī Z where Z '
1 & kAC / kC

kM & kAM
(19.73)

The standard uncertainty due to temperature effects on the liquid�s density may be derived from a
temperature range, t ± δtem, and the liquid�s coefficient of thermal expansion, β, at the center of
the range. Assuming a triangular distribution for the temperature with half-width δtem, the relative
standard uncertainty component due to temperature variations is . At typical roomβ δtem / 6
temperatures the value of β for water lies in the range 0.00021 EC!1 to 0.00026 EC!1; so, the total
standard uncertainty due to temperature effects is generally less than 0.05 %, which can often be
considered negligible. Values of β for water may also be applied to dilute aqueous solutions.
Other liquids have different coefficients of thermal expansion.

Example 19.36  An analyst measures a volume of dilute HCl in a laboratory where the tem-
perature range is assumed to be (22.5 ± 2.0) EC. The coefficient of thermal expansion for
water at 22.5 EC is approximately 0.00023 EC!1. So, the relative standard uncertainty of the
volume due to temperature effects on the density of the solution is

0.00023 EC&1 2.0 EC
6

' 0.00019

Again, the analyst considers the uncertainty due to temperature (0.02 %) to be negligible.

19E.3.2  Second Approach

An alternative approach, which is suitable for most varieties of pipets, is to calibrate the device
gravimetrically using an analytical balance. The balance, to be useful, must provide better accu-
racy than the pipet. In particular the balance�s repeatability and linearity tolerances should be
small relative to the tolerances for the pipet. The calibration provides an estimate of the pipet�s
capacity, the standard uncertainty of the capacity, and the variability to be expected during use.
The procedure involves dispensing a series of n pipet volumes of a specified liquid into a con-
tainer and weighing the container and zeroing the balance after each volume is added. Usually
the container must have a small mouth to reduce evaporation. The temperature of the room, the
liquid, and the apparatus involved should be specified, equilibrated, and controlled during the
experiment. The calibration is most often performed using water.

The procedure produces a set of balance indications, Ii , from which the arithmetic mean, , andĪ
the experimental standard deviation, s(Ii), are calculated. To obtain the estimated mean pipet
volume, V, the mean balance indication, , is multiplied by a factor, Z, which equals the quotientĪ
of the buoyancy-correction factor and the density of the liquid at room temperature. So, v is given
explicitly by
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25 The densities in the table are approximated adequately (to six decimal places) by the rational function

k '
0.999924794 % 7.37771644×10&3(t) & 7.52261541×10&6(t 2)

1 % 7.3265954×10&3(t)
where k denotes density in g/cm3 and t denotes temperature in EC. Use of this equation allows calculation of the
coefficient of thermal expansion, β, since β = !(dk / dt) / k.
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and where
kM is the density of the liquid;
kAM is the density of the air at the time the liquid is weighed;
kC is the density of the calibration mass standard for the balance; and
kAC is the density of the air at the time of the balance calibration.

A correction factor for thermal expansion of the pipet may also be included, if desired.

ASTM E542, �Standard Practice for Calibration of Laboratory Volumetric Apparatus,� provides
additional information about the procedure, including tables of values of Z for various condi-
tions. Table 19.6, which is taken from ASTM E542, shows the density of air-free water at var-
ious temperatures.25 Section 19E.2.7 of this attachment describes an equation to calculate the
density of air as a function of temperature, pressure, and humidity.

The volume, V, estimated by the calibration may be substituted for the pipet�s nominal capacity
when the pipet is used later in an analytical measurement. The uncertainty of V as a predictor of
the volume that will be dispensed during a subsequent measurement may be calculated as

Temperature, EC Density, g / cm3 Temperature, EC Density, g / cm3

15 0.999098 26 0.996782

16 0.998941 27 0.996511

17 0.998773 28 0.996232

18 0.998593 29 0.995943

19 0.998403 30 0.995645

20 0.998202 31 0.995339

21 0.997990 32 0.995024

22 0.997768 33 0.994701

23 0.997536 34 0.994369

24 0.997294 35 0.994030

25 0.997043

TABLE 19.6 � Density of air-free water
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u(V) ' Z 2 s 2(Ii) 1 %
1
n

% V 2 φ2
cal % φ

2
env %

β2δ2
tem

3
(19.74)

u(V) ' Zs(Ii) 1 %
1
n

(19.75)

u(V) '
δ2

cap

6
% Z 2 s 2(Ii) %

V 2β2δ2
tem

6
(19.76)

u(V) '
δ2

cap

6
% Z 2 s 2(Ii) (19.77)

where s(Ii) denotes the experimental standard deviation of the n balance indications, ncal and nenv
denote the relative standard uncertainties of mass measurements associated with balance calibra-
tion and environmental factors, respectively (see Section 19E.2), δtem denotes the temperature
tolerance, and β denotes the liquid�s coefficient of thermal expansion. Note that the uncertainty
of the buoyancy-correction factor has been ignored here and the standard uncertainty of Z has
been equated with the component due to thermal expansion of the liquid, which is assumed to be
dominant. The temperature distribution is taken to be triangular. Also note that the correlation
between Z and  induced by temperature effects on both the liquid�s density and the balanceĪ
sensitivity is unknown and has been ignored. Given the typical magnitudes of the various
uncertainty components here, the following uncertainty estimate is likely to be adequate for most
purposes (a pure Type A evaluation with n ! 1 degrees of freedom).

Note that if a different analyst performs the measurement, there may be an additional uncertainty
component associated with the difference in individual techniques.

If the mean volume is within specified tolerances, a slightly simplified approach is possible. The
pipet�s nominal capacity may be used as the volume, V, and the tolerance, δcap, may be used in a
Type B evaluation of standard uncertainty. In this case, the standard uncertainty of V is evaluated
as shown below.

Again, given the typical magnitudes of the uncertainty components, the following simpler ex-
pression is usually adequate.

The experimental procedure outlined above may also be adapted for other volume measuring
devices, including flasks and graduated cylinders.
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u(V) '
δ2

cap

6
% s 2 %

V 2β2δ2
tem

6
(19.78)

19E.3.3  Third Approach

The manufacturers of certain types of pipetting devices (e.g., Eppendorf® pipettes) provide speci-
fications for bias and precision. For these devices, the manufacturer�s specifications for bias and
precision may be assumed, provided the analyst uses the device properly, according to the manu-
facturer�s directions. In this case the Type B standard uncertainty of a pipetted volume, V, is eval-
uated as

where δcap is the manufacturer�s stated bias tolerance, assumed to represent the half-width of a tri-
angular distribution, s is the stated standard deviation, β is the liquid�s coefficient of thermal ex-
pansion, and δtem is the temperature tolerance. This approach has the advantage of simplicity;
however, if the analyst fails to follow the manufacturer�s directions for use, the uncertainty esti-
mate given by Equation 19.78 may be unrealistic. (As in the preceding section, the uncertainty
due to temperature effects can usually be ignored.)

Either of the first two approaches described above may also be used for these devices.
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